Move the implementation details into a private module
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
232bd65809
commit
c2bc1c5421
99
Map.agda
99
Map.agda
|
@ -8,14 +8,14 @@ module Map {a b : Level} (A : Set a) (B : Set b)
|
|||
(≡-dec-A : Decidable (_≡_ {a} {A}))
|
||||
where
|
||||
|
||||
import Data.List.Membership.Propositional as MemProp
|
||||
|
||||
open import Relation.Nullary using (¬_)
|
||||
open import Data.Nat using (ℕ)
|
||||
open import Data.List using (List; []; _∷_; _++_)
|
||||
open import Data.List.Membership.Propositional using ()
|
||||
open import Data.List.Relation.Unary.All using (All; []; _∷_)
|
||||
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
|
||||
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
|
||||
open import Data.Unit using (⊤)
|
||||
open import Data.Empty using (⊥)
|
||||
|
||||
Map : Set (a ⊔ b)
|
||||
|
@ -32,7 +32,7 @@ data Unique {c} {C : Set c} : List C → Set c where
|
|||
→ Unique xs
|
||||
→ Unique (x ∷ xs)
|
||||
|
||||
Unique-append : ∀ {c} {C : Set c} {x : C} {xs : List C} → ¬ Data.List.Membership.Propositional._∈_ x xs → Unique xs → Unique (xs ++ (x ∷ []))
|
||||
Unique-append : ∀ {c} {C : Set c} {x : C} {xs : List C} → ¬ MemProp._∈_ x xs → Unique xs → Unique (xs ++ (x ∷ []))
|
||||
Unique-append {c} {C} {x} {[]} _ _ = push [] empty
|
||||
Unique-append {c} {C} {x} {x' ∷ xs'} x∉xs (push x'≢ uxs') = push (help x'≢) (Unique-append (λ x∈xs' → x∉xs (there x∈xs')) uxs')
|
||||
where
|
||||
|
@ -43,12 +43,8 @@ Unique-append {c} {C} {x} {x' ∷ xs'} x∉xs (push x'≢ uxs') = push (help x'
|
|||
help {[]} _ = x'≢x ∷ []
|
||||
help {e ∷ es} (x'≢e ∷ x'≢es) = x'≢e ∷ help x'≢es
|
||||
|
||||
|
||||
_∈_ : (A × B) → List (A × B) → Set (a ⊔ b)
|
||||
_∈_ p m = Data.List.Membership.Propositional._∈_ p m
|
||||
|
||||
_∈k_ : A → List (A × B) → Set a
|
||||
_∈k_ k m = Data.List.Membership.Propositional._∈_ k (keys m)
|
||||
_∈_ p m = MemProp._∈_ p m
|
||||
|
||||
subset : ∀ (_≈_ : B → B → Set b) → List (A × B) → List (A × B) → Set (a ⊔ b)
|
||||
subset _≈_ m₁ m₂ = ∀ (k : A) (v : B) → (k , v) ∈ m₁ → Σ B (λ v' → v ≈ v' × ((k , v') ∈ m₂))
|
||||
|
@ -63,57 +59,64 @@ foldr : ∀ {c} {C : Set c} → (A → B → C → C) -> C -> List (A × B) -> C
|
|||
foldr f b [] = b
|
||||
foldr f b ((k , v) ∷ xs) = f k v (foldr f b xs)
|
||||
|
||||
insert : (B → B → B) → A → B → List (A × B) → List (A × B)
|
||||
insert f k v [] = (k , v) ∷ []
|
||||
insert f k v (x@(k' , v') ∷ xs) with ≡-dec-A k k'
|
||||
... | yes _ = (k' , f v v') ∷ xs
|
||||
... | no _ = x ∷ insert f k v xs
|
||||
|
||||
merge : (B → B → B) → List (A × B) → List (A × B) → List (A × B)
|
||||
merge f m₁ m₂ = foldr (insert f) m₂ m₁
|
||||
|
||||
absurd : ∀ {a} {A : Set a} → ⊥ → A
|
||||
absurd ()
|
||||
|
||||
insert-keys-∈ : ∀ (f : B → B → B) (k : A) (v : B) (l : List (A × B)) → k ∈k l → keys l ≡ keys (insert f k v l)
|
||||
insert-keys-∈ f k v ((k' , v') ∷ xs) (here k≡k') with (≡-dec-A k k')
|
||||
... | yes _ = refl
|
||||
... | no k≢k' = absurd (k≢k' k≡k')
|
||||
insert-keys-∈ f k v ((k' , _) ∷ xs) (there k∈kxs) with (≡-dec-A k k')
|
||||
... | yes _ = refl
|
||||
... | no _ = cong (λ xs' → k' ∷ xs') (insert-keys-∈ f k v xs k∈kxs)
|
||||
private module Impl (f : B → B → B) where
|
||||
_∈k_ : A → List (A × B) → Set a
|
||||
_∈k_ k m = MemProp._∈_ k (keys m)
|
||||
|
||||
insert-keys-∉ : ∀ (f : B → B → B) (k : A) (v : B) (l : List (A × B)) → ¬ (k ∈k l) → (keys l ++ (k ∷ [])) ≡ keys (insert f k v l)
|
||||
insert-keys-∉ f k v [] _ = refl
|
||||
insert-keys-∉ f k v ((k' , v') ∷ xs) k∉kl with (≡-dec-A k k')
|
||||
... | yes k≡k' = absurd (k∉kl (here k≡k'))
|
||||
... | no _ = cong (λ xs' → k' ∷ xs') (insert-keys-∉ f k v xs (λ k∈kxs → k∉kl (there k∈kxs)))
|
||||
insert : A → B → List (A × B) → List (A × B)
|
||||
insert k v [] = (k , v) ∷ []
|
||||
insert k v (x@(k' , v') ∷ xs) with ≡-dec-A k k'
|
||||
... | yes _ = (k' , f v v') ∷ xs
|
||||
... | no _ = x ∷ insert k v xs
|
||||
|
||||
∈k-dec : ∀ (k : A) (l : List (A × B)) → Dec (k ∈k l)
|
||||
∈k-dec k [] = no (λ ())
|
||||
∈k-dec k ((k' , v) ∷ xs) with (≡-dec-A k k')
|
||||
... | yes k≡k' = yes (here k≡k')
|
||||
... | no k≢k' with (∈k-dec k xs)
|
||||
... | yes k∈kxs = yes (there k∈kxs)
|
||||
... | no k∉kxs = no witness
|
||||
where
|
||||
witness : ¬ k ∈k ((k' , v) ∷ xs)
|
||||
witness (here k≡k') = k≢k' k≡k'
|
||||
witness (there k∈kxs) = k∉kxs k∈kxs
|
||||
merge : List (A × B) → List (A × B) → List (A × B)
|
||||
merge m₁ m₂ = foldr insert m₂ m₁
|
||||
|
||||
insert-preserves-unique : ∀ (f : B → B → B) (k : A) (v : B) (l : List (A × B)) → Unique (keys l) → Unique (keys (insert f k v l))
|
||||
insert-preserves-unique f k v l u with (∈k-dec k l)
|
||||
... | yes k∈kl rewrite insert-keys-∈ f k v l k∈kl = u
|
||||
... | no k∉kl rewrite sym (insert-keys-∉ f k v l k∉kl) = Unique-append k∉kl u
|
||||
insert-keys-∈ : ∀ (k : A) (v : B) (l : List (A × B)) → k ∈k l → keys l ≡ keys (insert k v l)
|
||||
insert-keys-∈ k v ((k' , v') ∷ xs) (here k≡k') with (≡-dec-A k k')
|
||||
... | yes _ = refl
|
||||
... | no k≢k' = absurd (k≢k' k≡k')
|
||||
insert-keys-∈ k v ((k' , _) ∷ xs) (there k∈kxs) with (≡-dec-A k k')
|
||||
... | yes _ = refl
|
||||
... | no _ = cong (λ xs' → k' ∷ xs') (insert-keys-∈ k v xs k∈kxs)
|
||||
|
||||
merge-preserves-unique : ∀ (f : B → B → B) (l₁ l₂ : List (A × B)) → Unique (keys l₂) → Unique (keys (merge f l₁ l₂))
|
||||
merge-preserves-unique f [] l₂ u₂ = u₂
|
||||
merge-preserves-unique f ((k₁ , v₁) ∷ xs₁) l₂ u₂ = insert-preserves-unique f k₁ v₁ (merge f xs₁ l₂) (merge-preserves-unique f xs₁ l₂ u₂)
|
||||
insert-keys-∉ : ∀ (k : A) (v : B) (l : List (A × B)) → ¬ (k ∈k l) → (keys l ++ (k ∷ [])) ≡ keys (insert k v l)
|
||||
insert-keys-∉ k v [] _ = refl
|
||||
insert-keys-∉ k v ((k' , v') ∷ xs) k∉kl with (≡-dec-A k k')
|
||||
... | yes k≡k' = absurd (k∉kl (here k≡k'))
|
||||
... | no _ = cong (λ xs' → k' ∷ xs') (insert-keys-∉ k v xs (λ k∈kxs → k∉kl (there k∈kxs)))
|
||||
|
||||
Map-functional : ∀ (k : A) (v v' : B) (xs : List (A × B)) → Unique (keys ((k , v) ∷ xs)) → Data.List.Membership.Propositional._∈_ (k , v') ((k , v) ∷ xs) → v ≡ v'
|
||||
∈k-dec : ∀ (k : A) (l : List (A × B)) → Dec (k ∈k l)
|
||||
∈k-dec k [] = no (λ ())
|
||||
∈k-dec k ((k' , v) ∷ xs) with (≡-dec-A k k')
|
||||
... | yes k≡k' = yes (here k≡k')
|
||||
... | no k≢k' with (∈k-dec k xs)
|
||||
... | yes k∈kxs = yes (there k∈kxs)
|
||||
... | no k∉kxs = no witness
|
||||
where
|
||||
witness : ¬ k ∈k ((k' , v) ∷ xs)
|
||||
witness (here k≡k') = k≢k' k≡k'
|
||||
witness (there k∈kxs) = k∉kxs k∈kxs
|
||||
|
||||
insert-preserves-unique : ∀ (k : A) (v : B) (l : List (A × B)) → Unique (keys l) → Unique (keys (insert k v l))
|
||||
insert-preserves-unique k v l u with (∈k-dec k l)
|
||||
... | yes k∈kl rewrite insert-keys-∈ k v l k∈kl = u
|
||||
... | no k∉kl rewrite sym (insert-keys-∉ k v l k∉kl) = Unique-append k∉kl u
|
||||
|
||||
merge-preserves-unique : ∀ (l₁ l₂ : List (A × B)) → Unique (keys l₂) → Unique (keys (merge l₁ l₂))
|
||||
merge-preserves-unique [] l₂ u₂ = u₂
|
||||
merge-preserves-unique ((k₁ , v₁) ∷ xs₁) l₂ u₂ = insert-preserves-unique k₁ v₁ (merge xs₁ l₂) (merge-preserves-unique xs₁ l₂ u₂)
|
||||
|
||||
Map-functional : ∀ (k : A) (v v' : B) (xs : List (A × B)) → Unique (keys ((k , v) ∷ xs)) → MemProp._∈_ (k , v') ((k , v) ∷ xs) → v ≡ v'
|
||||
Map-functional k v v' _ _ (here k,v'≡k,v) = sym (cong proj₂ k,v'≡k,v)
|
||||
Map-functional k v v' xs (push k≢ _) (there k,v'∈xs) = absurd (unique-not-in xs v' (k≢ , k,v'∈xs))
|
||||
where
|
||||
unique-not-in : ∀ (xs : List (A × B)) (v' : B) → ¬ (All (λ k' → ¬ k ≡ k') (keys xs) × (k , v') ∈ xs)
|
||||
unique-not-in ((k' , _) ∷ xs) v' (k≢k' ∷ _ , here k',≡x) = k≢k' (cong proj₁ k',≡x)
|
||||
unique-not-in (_ ∷ xs) v' (_ ∷ rest , there k,v'∈xs) = unique-not-in xs v' (rest , k,v'∈xs)
|
||||
|
||||
module _ (f : B → B → B) where
|
||||
open Impl f public using (insert; merge)
|
||||
|
|
Loading…
Reference in New Issue
Block a user