Prove that AxB is a finite height semilattice
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
@@ -16,7 +16,7 @@ module _ where
|
||||
|
||||
data Chain : A → A → ℕ → Set a where
|
||||
done : ∀ {a a' : A} → a ≈ a' → Chain a a' 0
|
||||
step : ∀ {a₁ a₂ a₂' a₃ : A} {n : ℕ} → a₁ R a₂ → a₂ ≈ a₂' → Chain a₂ a₃ n → Chain a₁ a₃ (suc n)
|
||||
step : ∀ {a₁ a₂ a₂' a₃ : A} {n : ℕ} → a₁ R a₂ → a₂ ≈ a₂' → Chain a₂' a₃ n → Chain a₁ a₃ (suc n)
|
||||
|
||||
Chain-≈-cong₁ : ∀ {a₁ a₁' a₂} {n : ℕ} → a₁ ≈ a₁' → Chain a₁ a₂ n → Chain a₁' a₂ n
|
||||
Chain-≈-cong₁ a₁≈a₁' (done a₁≈a₂) = done (≈-trans (≈-sym a₁≈a₁') a₁≈a₂)
|
||||
|
||||
Reference in New Issue
Block a user