Move the lattice etc. instances into Lattice.Map
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
@@ -35,44 +35,3 @@ module IsEquivalenceInstances where
|
||||
, IsEquivalence.≈-trans eB b₁≈b₂ b₂≈b₃
|
||||
)
|
||||
}
|
||||
|
||||
module ForMap {a b} (A : Set a) (B : Set b)
|
||||
(≡-dec-A : Decidable (_≡_ {a} {A}))
|
||||
(_≈₂_ : B → B → Set b)
|
||||
(eB : IsEquivalence B _≈₂_) where
|
||||
|
||||
open import Lattice.Map A B ≡-dec-A using (Map; lift; subset)
|
||||
open import Data.List using (_∷_; []) -- TODO: re-export these with nicer names from map
|
||||
|
||||
open IsEquivalence eB renaming
|
||||
( ≈-refl to ≈₂-refl
|
||||
; ≈-sym to ≈₂-sym
|
||||
; ≈-trans to ≈₂-trans
|
||||
)
|
||||
|
||||
_≈_ : Map → Map → Set (Agda.Primitive._⊔_ a b)
|
||||
_≈_ = lift _≈₂_
|
||||
|
||||
_⊆_ : Map → Map → Set (Agda.Primitive._⊔_ a b)
|
||||
_⊆_ = subset _≈₂_
|
||||
|
||||
private
|
||||
⊆-refl : (m : Map) → m ⊆ m
|
||||
⊆-refl _ k v k,v∈m = (v , (≈₂-refl , k,v∈m))
|
||||
|
||||
⊆-trans : (m₁ m₂ m₃ : Map) → m₁ ⊆ m₂ → m₂ ⊆ m₃ → m₁ ⊆ m₃
|
||||
⊆-trans _ _ _ m₁⊆m₂ m₂⊆m₃ k v k,v∈m₁ =
|
||||
let
|
||||
(v' , (v≈v' , k,v'∈m₂)) = m₁⊆m₂ k v k,v∈m₁
|
||||
(v'' , (v'≈v'' , k,v''∈m₃)) = m₂⊆m₃ k v' k,v'∈m₂
|
||||
in (v'' , (≈₂-trans v≈v' v'≈v'' , k,v''∈m₃))
|
||||
|
||||
LiftEquivalence : IsEquivalence Map _≈_
|
||||
LiftEquivalence = record
|
||||
{ ≈-refl = λ {m} → (⊆-refl m , ⊆-refl m)
|
||||
; ≈-sym = λ {m₁} {m₂} (m₁⊆m₂ , m₂⊆m₁) → (m₂⊆m₁ , m₁⊆m₂)
|
||||
; ≈-trans = λ {m₁} {m₂} {m₃} (m₁⊆m₂ , m₂⊆m₁) (m₂⊆m₃ , m₃⊆m₂) →
|
||||
( ⊆-trans m₁ m₂ m₃ m₁⊆m₂ m₂⊆m₃
|
||||
, ⊆-trans m₃ m₂ m₁ m₃⊆m₂ m₂⊆m₁
|
||||
)
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user