Swich AboveBelow to using instances
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
d96eb97b69
commit
70847d51db
@ -13,6 +13,7 @@ open import Relation.Nullary using (¬_; yes; no)
|
|||||||
|
|
||||||
open import Language
|
open import Language
|
||||||
open import Lattice
|
open import Lattice
|
||||||
|
open import Equivalence
|
||||||
open import Showable using (Showable; show)
|
open import Showable using (Showable; show)
|
||||||
open import Utils using (_⇒_; _∧_; _∨_)
|
open import Utils using (_⇒_; _∧_; _∨_)
|
||||||
import Analysis.Forward
|
import Analysis.Forward
|
||||||
@ -44,11 +45,19 @@ _≟ᵍ_ 0ˢ + = no (λ ())
|
|||||||
_≟ᵍ_ 0ˢ - = no (λ ())
|
_≟ᵍ_ 0ˢ - = no (λ ())
|
||||||
_≟ᵍ_ 0ˢ 0ˢ = yes refl
|
_≟ᵍ_ 0ˢ 0ˢ = yes refl
|
||||||
|
|
||||||
≡-Decidable-Sign : IsDecidable {_} {Sign} _≡_
|
instance
|
||||||
≡-Decidable-Sign = record { R-dec = _≟ᵍ_ }
|
≡-equiv : IsEquivalence Sign _≡_
|
||||||
|
≡-equiv = record
|
||||||
|
{ ≈-refl = refl
|
||||||
|
; ≈-sym = sym
|
||||||
|
; ≈-trans = trans
|
||||||
|
}
|
||||||
|
|
||||||
|
≡-Decidable-Sign : IsDecidable {_} {Sign} _≡_
|
||||||
|
≡-Decidable-Sign = record { R-dec = _≟ᵍ_ }
|
||||||
|
|
||||||
-- embelish 'sign' with a top and bottom element.
|
-- embelish 'sign' with a top and bottom element.
|
||||||
open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) ≡-Decidable-Sign as AB
|
open import Lattice.AboveBelow Sign _ as AB
|
||||||
using ()
|
using ()
|
||||||
renaming
|
renaming
|
||||||
( AboveBelow to SignLattice
|
( AboveBelow to SignLattice
|
||||||
|
@ -1,11 +1,12 @@
|
|||||||
open import Lattice
|
open import Lattice
|
||||||
open import Equivalence
|
open import Equivalence
|
||||||
open import Relation.Nullary using (Dec; ¬_; yes; no)
|
open import Relation.Nullary using (Dec; ¬_; yes; no)
|
||||||
|
open import Data.Unit using () renaming (⊤ to ⊤ᵘ)
|
||||||
|
|
||||||
module Lattice.AboveBelow {a} (A : Set a)
|
module Lattice.AboveBelow {a} (A : Set a)
|
||||||
(_≈₁_ : A → A → Set a)
|
{_≈₁_ : A → A → Set a}
|
||||||
(≈₁-equiv : IsEquivalence A _≈₁_)
|
{{≈₁-equiv : IsEquivalence A _≈₁_}}
|
||||||
(≈₁-Decidable : IsDecidable _≈₁_) where
|
{{≈₁-Decidable : IsDecidable _≈₁_}} (dummy : ⊤ᵘ) where
|
||||||
|
|
||||||
open import Data.Empty using (⊥-elim)
|
open import Data.Empty using (⊥-elim)
|
||||||
open import Data.Product using (_,_)
|
open import Data.Product using (_,_)
|
||||||
|
Loading…
Reference in New Issue
Block a user