Reorder some definitions
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
57606636a7
commit
71cb97ad8c
|
@ -104,12 +104,26 @@ module Graphs where
|
||||||
nodes : Vec (List BasicStmt) size
|
nodes : Vec (List BasicStmt) size
|
||||||
edges : List Edge
|
edges : List Edge
|
||||||
|
|
||||||
castᵉ : ∀ {n m : ℕ} .(p : n ≡ m) → (Fin n × Fin n) → (Fin m × Fin m)
|
|
||||||
castᵉ p (idx₁ , idx₂) = (castᶠ p idx₁ , castᶠ p idx₂)
|
|
||||||
|
|
||||||
↑ˡ-Edge : ∀ {n} → (Fin n × Fin n) → ∀ m → (Fin (n +ⁿ m) × Fin (n +ⁿ m))
|
↑ˡ-Edge : ∀ {n} → (Fin n × Fin n) → ∀ m → (Fin (n +ⁿ m) × Fin (n +ⁿ m))
|
||||||
↑ˡ-Edge (idx₁ , idx₂) m = (idx₁ ↑ˡ m , idx₂ ↑ˡ m)
|
↑ˡ-Edge (idx₁ , idx₂) m = (idx₁ ↑ˡ m , idx₂ ↑ˡ m)
|
||||||
|
|
||||||
|
_[_] : ∀ (g : Graph) → Graph.Index g → List BasicStmt
|
||||||
|
_[_] g idx = lookup (Graph.nodes g) idx
|
||||||
|
|
||||||
|
record _⊆_ (g₁ g₂ : Graph) : Set where
|
||||||
|
constructor Mk-⊆
|
||||||
|
field
|
||||||
|
n : ℕ
|
||||||
|
sg₂≡sg₁+n : Graph.size g₂ ≡ Graph.size g₁ +ⁿ n
|
||||||
|
newNodes : Vec (List BasicStmt) n
|
||||||
|
nsg₂≡nsg₁++newNodes : cast sg₂≡sg₁+n (Graph.nodes g₂) ≡ Graph.nodes g₁ ++ newNodes
|
||||||
|
e∈g₁⇒e∈g₂ : ∀ {e : Graph.Edge g₁} →
|
||||||
|
e ∈ˡ (Graph.edges g₁) →
|
||||||
|
(↑ˡ-Edge e n) ∈ˡ (subst (λ m → List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
|
||||||
|
|
||||||
|
castᵉ : ∀ {n m : ℕ} .(p : n ≡ m) → (Fin n × Fin n) → (Fin m × Fin m)
|
||||||
|
castᵉ p (idx₁ , idx₂) = (castᶠ p idx₁ , castᶠ p idx₂)
|
||||||
|
|
||||||
↑ˡ-assoc : ∀ {s n₁ n₂} (f : Fin s) (p : s +ⁿ (n₁ +ⁿ n₂) ≡ s +ⁿ n₁ +ⁿ n₂) →
|
↑ˡ-assoc : ∀ {s n₁ n₂} (f : Fin s) (p : s +ⁿ (n₁ +ⁿ n₂) ≡ s +ⁿ n₁ +ⁿ n₂) →
|
||||||
f ↑ˡ n₁ ↑ˡ n₂ ≡ castᶠ p (f ↑ˡ (n₁ +ⁿ n₂))
|
f ↑ˡ n₁ ↑ˡ n₂ ≡ castᶠ p (f ↑ˡ (n₁ +ⁿ n₂))
|
||||||
↑ˡ-assoc zero p = refl
|
↑ˡ-assoc zero p = refl
|
||||||
|
@ -140,20 +154,6 @@ module Graphs where
|
||||||
rewrite castᶠ-is-id refl idx₁
|
rewrite castᶠ-is-id refl idx₁
|
||||||
rewrite castᶠ-is-id refl idx₂ = e∈es
|
rewrite castᶠ-is-id refl idx₂ = e∈es
|
||||||
|
|
||||||
_[_] : ∀ (g : Graph) → Graph.Index g → List BasicStmt
|
|
||||||
_[_] g idx = lookup (Graph.nodes g) idx
|
|
||||||
|
|
||||||
record _⊆_ (g₁ g₂ : Graph) : Set where
|
|
||||||
constructor Mk-⊆
|
|
||||||
field
|
|
||||||
n : ℕ
|
|
||||||
sg₂≡sg₁+n : Graph.size g₂ ≡ Graph.size g₁ +ⁿ n
|
|
||||||
newNodes : Vec (List BasicStmt) n
|
|
||||||
nsg₂≡nsg₁++newNodes : cast sg₂≡sg₁+n (Graph.nodes g₂) ≡ Graph.nodes g₁ ++ newNodes
|
|
||||||
e∈g₁⇒e∈g₂ : ∀ {e : Graph.Edge g₁} →
|
|
||||||
e ∈ˡ (Graph.edges g₁) →
|
|
||||||
(↑ˡ-Edge e n) ∈ˡ (subst (λ m → List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
|
|
||||||
|
|
||||||
⊆-trans : ∀ {g₁ g₂ g₃ : Graph} → g₁ ⊆ g₂ → g₂ ⊆ g₃ → g₁ ⊆ g₃
|
⊆-trans : ∀ {g₁ g₂ g₃ : Graph} → g₁ ⊆ g₂ → g₂ ⊆ g₃ → g₁ ⊆ g₃
|
||||||
⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃}
|
⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃}
|
||||||
(Mk-⊆ n₁ p₁@refl newNodes₁ nsg₂≡nsg₁++newNodes₁ e∈g₁⇒e∈g₂)
|
(Mk-⊆ n₁ p₁@refl newNodes₁ nsg₂≡nsg₁++newNodes₁ e∈g₁⇒e∈g₂)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user