Add proof of node preservation for adding edges.
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
		
							parent
							
								
									85fdf544b9
								
							
						
					
					
						commit
						78252b6c9e
					
				@ -117,7 +117,7 @@ module Graphs where
 | 
			
		||||
            g₁[]≡g₂[] : ∀ (idx : Graph.Index g₁) →
 | 
			
		||||
                        lookup (Graph.nodes g₁) idx ≡
 | 
			
		||||
                        lookup (cast sg₂≡sg₁+n (Graph.nodes g₂)) (idx ↑ˡ n)
 | 
			
		||||
            e∈g₁⇒e∈g₂ : ∀ (e : Graph.Edge g₁) →
 | 
			
		||||
            e∈g₁⇒e∈g₂ : ∀ {e : Graph.Edge g₁} →
 | 
			
		||||
                        e ∈ˡ (Graph.edges g₁) →
 | 
			
		||||
                        (↑ˡ-Edge e n) ∈ˡ (subst (λ m → List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
 | 
			
		||||
 | 
			
		||||
@ -137,23 +137,22 @@ module Graphs where
 | 
			
		||||
              lookup (cast p₂ ns₃) ((castᶠ (sym p₁) (idx ↑ˡ n₁)) ↑ˡ n₂)
 | 
			
		||||
            ≡⟨ lookup-cast₁ p₂ _ _ ⟩
 | 
			
		||||
              lookup ns₃ (castᶠ (sym p₂) (((castᶠ (sym p₁) (idx ↑ˡ n₁)) ↑ˡ n₂)))
 | 
			
		||||
            ≡⟨ cong (lookup ns₃) (flatten-casts (sym p₂) (sym p₁) (sym (+-assoc s₁ n₁ n₂)) idx) ⟩
 | 
			
		||||
            ≡⟨ cong (lookup ns₃) (↑ˡ-assoc (sym p₂) (sym p₁) (sym (+-assoc s₁ n₁ n₂)) idx) ⟩
 | 
			
		||||
              lookup ns₃ (castᶠ (sym (+-assoc s₁ n₁ n₂)) (idx ↑ˡ (n₁ +ⁿ n₂)))
 | 
			
		||||
            ≡⟨ sym (lookup-cast₁ (+-assoc s₁ n₁ n₂) _ _) ⟩
 | 
			
		||||
              lookup (cast (+-assoc s₁ n₁ n₂) ns₃) (idx ↑ˡ (n₁ +ⁿ n₂))
 | 
			
		||||
            ∎
 | 
			
		||||
        ; e∈g₁⇒e∈g₂ = {!!}
 | 
			
		||||
        ; e∈g₁⇒e∈g₂ = {!!} -- λ e∈g₁ → e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁)
 | 
			
		||||
        }
 | 
			
		||||
        where
 | 
			
		||||
            flatten-casts : ∀ {s₁ s₂ s₃ n₁ n₂ : ℕ}
 | 
			
		||||
            ↑ˡ-assoc : ∀ {s₁ s₂ s₃ n₁ n₂ : ℕ}
 | 
			
		||||
                            (p : s₂ +ⁿ n₂ ≡ s₃) (q : s₁ +ⁿ n₁ ≡ s₂)
 | 
			
		||||
                            (r : s₁ +ⁿ (n₁ +ⁿ n₂) ≡ s₃)
 | 
			
		||||
                            (idx : Fin s₁) →
 | 
			
		||||
                            castᶠ p ((castᶠ q (idx ↑ˡ n₁)) ↑ˡ n₂) ≡ castᶠ r (idx ↑ˡ (n₁ +ⁿ n₂))
 | 
			
		||||
            flatten-casts refl refl r zero = refl
 | 
			
		||||
            flatten-casts {(suc s₁)} {s₂} {s₃} {n₁} {n₂} refl refl r (suc idx')
 | 
			
		||||
                rewrite flatten-casts refl refl (sym (+-assoc s₁ n₁ n₂)) idx' = refl
 | 
			
		||||
 | 
			
		||||
            ↑ˡ-assoc refl refl r zero = refl
 | 
			
		||||
            ↑ˡ-assoc {(suc s₁)} {s₂} {s₃} {n₁} {n₂} refl refl r (suc idx')
 | 
			
		||||
                rewrite ↑ˡ-assoc refl refl (sym (+-assoc s₁ n₁ n₂)) idx' = refl
 | 
			
		||||
 | 
			
		||||
    record Relaxable (T : Graph → Set) : Set where
 | 
			
		||||
        field relax : ∀ {g₁ g₂ : Graph} → g₁ ⊆ g₂ → T g₁ → T g₂
 | 
			
		||||
@ -230,25 +229,38 @@ module Graphs where
 | 
			
		||||
                  { n = 1
 | 
			
		||||
                  ; sg₂≡sg₁+n = refl
 | 
			
		||||
                  ; g₁[]≡g₂[] = λ idx → trans (sym (lookup-++ˡ (Graph.nodes g) (bss ∷ []) idx)) (sym (cong (λ vec → lookup vec (idx ↑ˡ 1)) (cast-is-id refl (Graph.nodes g ++ (bss ∷ [])))))
 | 
			
		||||
                  ; e∈g₁⇒e∈g₂ = λ e e∈g₁ → x∈xs⇒fx∈fxs (λ e' → ↑ˡ-Edge e' 1) e∈g₁
 | 
			
		||||
                  ; e∈g₁⇒e∈g₂ = λ e∈g₁ → x∈xs⇒fx∈fxs (λ e' → ↑ˡ-Edge e' 1) e∈g₁
 | 
			
		||||
                  }
 | 
			
		||||
              )
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        addEdges : ∀ (g : Graph) → List (Graph.Edge g) → Σ Graph (λ g' → g ⊆ g')
 | 
			
		||||
        addEdges g es =
 | 
			
		||||
        addEdges (MkGraph s ns es) es' =
 | 
			
		||||
            ( record
 | 
			
		||||
                { size = Graph.size g
 | 
			
		||||
                ; nodes = Graph.nodes g
 | 
			
		||||
                ; edges = es ++ˡ Graph.edges g
 | 
			
		||||
                { size = s
 | 
			
		||||
                ; nodes = ns
 | 
			
		||||
                ; edges = es' ++ˡ es
 | 
			
		||||
                }
 | 
			
		||||
            , record
 | 
			
		||||
                { n = 0
 | 
			
		||||
                ; sg₂≡sg₁+n = +-comm 0 (Graph.size g)
 | 
			
		||||
                ; g₁[]≡g₂[] = {!!}
 | 
			
		||||
                ; sg₂≡sg₁+n = +-comm 0 s
 | 
			
		||||
                ; g₁[]≡g₂[] = λ idx →
 | 
			
		||||
                    begin
 | 
			
		||||
                        lookup ns idx
 | 
			
		||||
                    ≡⟨ cong (lookup ns) (↑ˡ-identityʳ (sym (+-comm 0 s)) idx) ⟩
 | 
			
		||||
                        lookup ns (castᶠ (sym (+-comm 0 s)) (idx ↑ˡ 0))
 | 
			
		||||
                    ≡⟨ sym (lookup-cast₁ (+-comm 0 s) _ _) ⟩
 | 
			
		||||
                        lookup (cast (+-comm 0 s) ns) (idx ↑ˡ 0)
 | 
			
		||||
                    ∎
 | 
			
		||||
                ; e∈g₁⇒e∈g₂ = {!!}
 | 
			
		||||
                }
 | 
			
		||||
            )
 | 
			
		||||
            where
 | 
			
		||||
                ↑ˡ-identityʳ : ∀ {s} (p : s +ⁿ 0 ≡ s) (idx : Fin s) →
 | 
			
		||||
                           idx ≡ castᶠ p (idx ↑ˡ 0)
 | 
			
		||||
                ↑ˡ-identityʳ p zero = refl
 | 
			
		||||
                ↑ˡ-identityʳ {suc s'} p (suc f')
 | 
			
		||||
                    rewrite sym (↑ˡ-identityʳ (+-comm s' 0) f') = refl
 | 
			
		||||
 | 
			
		||||
        pushEmptyBlock : MonotonicGraphFunction Graph.Index
 | 
			
		||||
        pushEmptyBlock = pushBasicBlock []
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user