Do away with implicit arguments in some places where they can't be inferred

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2023-07-24 23:58:14 -07:00
parent 4aea9a0358
commit 850984ec15

View File

@ -90,33 +90,33 @@ module IsEquivalenceInstances where
_⊆_ : Map Map Set (Agda.Primitive._⊔_ a b) _⊆_ : Map Map Set (Agda.Primitive._⊔_ a b)
_⊆_ = subset _≈₂_ _⊆_ = subset _≈₂_
⊆-refl : {m : Map} m m ⊆-refl : (m : Map) m m
⊆-refl k v k,v∈m = (v , (≈₂-refl , k,v∈m)) ⊆-refl _ k v k,v∈m = (v , (≈₂-refl , k,v∈m))
⊆-trans : {m₁ m₂ m₃ : Map} m₁ m₂ m₂ m₃ m₁ m₃ ⊆-trans : (m₁ m₂ m₃ : Map) m₁ m₂ m₂ m₃ m₁ m₃
⊆-trans m₁⊆m₂ m₂⊆m₃ k v k,v∈m₁ = ⊆-trans _ _ _ m₁⊆m₂ m₂⊆m₃ k v k,v∈m₁ =
let let
(v' , (v≈v' , k,v'∈m₂)) = m₁⊆m₂ k v k,v∈m₁ (v' , (v≈v' , k,v'∈m₂)) = m₁⊆m₂ k v k,v∈m₁
(v'' , (v'≈v'' , k,v''∈m₃)) = m₂⊆m₃ k v' k,v'∈m₂ (v'' , (v'≈v'' , k,v''∈m₃)) = m₂⊆m₃ k v' k,v'∈m₂
in (v'' , (≈₂-trans v≈v' v'≈v'' , k,v''∈m₃)) in (v'' , (≈₂-trans v≈v' v'≈v'' , k,v''∈m₃))
≈-refl : {m : Map} m m ≈-refl : (m : Map) m m
≈-refl {m} = (⊆-refl {m}, ⊆-refl {m}) ≈-refl m = (⊆-refl m , ⊆-refl m)
≈-sym : {m₁ m₂ : Map} m₁ m₂ m₂ m₁ ≈-sym : (m₁ m₂ : Map) m₁ m₂ m₂ m₁
≈-sym (m₁⊆m₂ , m₂⊆m₁) = (m₂⊆m₁ , m₁⊆m₂) ≈-sym _ _ (m₁⊆m₂ , m₂⊆m₁) = (m₂⊆m₁ , m₁⊆m₂)
≈-trans : {m₁ m₂ m₃ : Map} m₁ m₂ m₂ m₃ m₁ m₃ ≈-trans : (m₁ m₂ m₃ : Map) m₁ m₂ m₂ m₃ m₁ m₃
≈-trans {m₁} {m₂} {m₃} (m₁⊆m₂ , m₂⊆m₁) (m₂⊆m₃ , m₃⊆m₂) = ≈-trans m₁ m₂ m₃ (m₁⊆m₂ , m₂⊆m₁) (m₂⊆m₃ , m₃⊆m₂) =
( ⊆-trans {m₁} {m₂} {m₃} m₁⊆m₂ m₂⊆m₃ ( ⊆-trans m₁ m₂ m₃ m₁⊆m₂ m₂⊆m₃
, ⊆-trans {m₃} {m₂} {m₁} m₃⊆m₂ m₂⊆m₁ , ⊆-trans m₃ m₂ m₁ m₃⊆m₂ m₂⊆m₁
) )
LiftEquivalence : IsEquivalence Map _≈_ LiftEquivalence : IsEquivalence Map _≈_
LiftEquivalence = record LiftEquivalence = record
{ ≈-refl = λ {m₁} ≈-refl {m₁} { ≈-refl = λ {m₁} ≈-refl m₁
; ≈-sym = λ {m₁} {m₂} ≈-sym {m₁} {m₂} ; ≈-sym = λ {m₁} {m₂} ≈-sym m₁ m₂
; ≈-trans = λ {m₁} {m₂} {m₃} ≈-trans {m₁} {m₂} {m₃} ; ≈-trans = λ {m₁} {m₂} {m₃} ≈-trans m₁ m₂ m₃
} }
module IsSemilatticeInstances where module IsSemilatticeInstances where