Prove that Map equivalence is decidable

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2023-08-19 16:30:53 -07:00
parent 3755a31bee
commit 99cc5af243

View File

@ -1,4 +1,4 @@
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong; subst)
open import Relation.Binary.Definitions using (Decidable)
open import Relation.Binary.Core using (Rel)
open import Relation.Nullary using (Dec; yes; no; Reflects; ofʸ; ofⁿ)
@ -533,6 +533,59 @@ module _ (_≈_ : B → B → Set b) where
lift : Map Map Set (a ⊔ℓ b)
lift m₁ m₂ = subset m₁ m₂ × subset m₂ m₁
private
data SubsetInfo (m₁ m₂ : Map) : Set (a ⊔ℓ b) where
extra : (k : A) k ∈k m₁ ¬ k ∈k m₂ SubsetInfo m₁ m₂
mismatch : (k : A) (v₁ v₂ : B) (k , v₁) m₁ (k , v₂) m₂ ¬ v₁ v₂ SubsetInfo m₁ m₂
fine : subset m₁ m₂ SubsetInfo m₁ m₂
SubsetInfo-to-dec : {m₁ m₂ : Map} SubsetInfo m₁ m₂ Dec (subset m₁ m₂)
SubsetInfo-to-dec (extra k k∈km₁ k∉km₂) =
let (v , k,v∈m₁) = locate k∈km₁
in no (λ m₁⊆m₂
let (v' , (_ , k,v'∈m₂)) = m₁⊆m₂ k v k,v∈m₁
in k∉km₂ (∈-cong proj₁ k,v'∈m₂))
SubsetInfo-to-dec {m₁} {m₂} (mismatch k v₁ v₂ k,v₁∈m₁ k,v₂∈m₂ v₁̷≈v₂) =
no (λ m₁⊆m₂
let (v' , (v₁≈v' , k,v'∈m₂)) = m₁⊆m₂ k v₁ k,v₁∈m₁
in v₁̷≈v₂ (subst (λ v'' v₁ v'') (Map-functional {k} {v'} {v₂} {m₂} k,v'∈m₂ k,v₂∈m₂) v₁≈v')) -- for some reason, can't just use subst...
SubsetInfo-to-dec (fine m₁⊆m₂) = yes m₁⊆m₂
module _ (≈-dec : (b₁ b₂ : B) Dec (b₁ b₂)) where
private
compute-SubsetInfo : m₁ m₂ SubsetInfo m₁ m₂
compute-SubsetInfo ([] , _) m₂ = fine (λ k v ())
compute-SubsetInfo m₁@((k , v) xs₁ , push k≢xs₁ uxs₁) m₂@(l₂ , u₂)
with compute-SubsetInfo (xs₁ , uxs₁) m₂
... | extra k' k'∈kxs₁ k'∉km₂ = extra k' (there k'∈kxs₁) k'∉km₂
... | mismatch k' v₁ v₂ k',v₁∈xs₁ k',v₂∈m₂ v₁̷≈v₂ =
mismatch k' v₁ v₂ (there k',v₁∈xs₁) k',v₂∈m₂ v₁̷≈v₂
... | fine xs₁⊆m₂ with ∈k-dec k l₂
... | no k∉km₂ = extra k (here refl) k∉km₂
... | yes k∈km₂ with locate k∈km₂
... | (v' , k,v'∈m₂) with ≈-dec v v'
... | no v̷≈v' = mismatch k v v' (here refl) (k,v'∈m₂) v̷≈v'
... | yes v≈v' = fine m₁⊆m₂
where
m₁⊆m₂ : subset m₁ m₂
m₁⊆m₂ k' v'' (here k,v≡k',v'')
rewrite cong proj₁ k,v≡k',v''
rewrite cong proj₂ k,v≡k',v'' =
(v' , (v≈v' , k,v'∈m₂))
m₁⊆m₂ k' v'' (there k,v≡k',v'') =
xs₁⊆m₂ k' v'' k,v≡k',v''
subset-dec : m₁ m₂ Dec (subset m₁ m₂)
subset-dec m₁ m₂ = SubsetInfo-to-dec (compute-SubsetInfo m₁ m₂)
lift-dec : m₁ m₂ Dec (lift m₁ m₂)
lift-dec m₁ m₂
with subset-dec m₁ m₂ | subset-dec m₂ m₁
... | yes m₁⊆m₂ | yes m₂⊆m₁ = yes (m₁⊆m₂ , m₂⊆m₁)
... | _ | no m₂̷⊆m₁ = no (λ (_ , m₂⊆m₁) m₂̷⊆m₁ m₂⊆m₁)
... | no m₁̷⊆m₂ | _ = no (λ (m₁⊆m₂ , _) m₁̷⊆m₂ m₁⊆m₂)
module _ (≈-refl : {b : B} b b)
(≈-sym : {b₁ b₂ : B} b₁ b₂ b₂ b₁)
(f : B B B) where