Commit result of (unsuccessfully) trying to prove monotonicity of plus.
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
fdc40632bf
commit
afe5bac2dc
@ -1,10 +1,11 @@
|
||||
module Analysis.Sign where
|
||||
|
||||
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
|
||||
open import Data.Product using (proj₁)
|
||||
open import Data.List using (foldr)
|
||||
open import Data.Product using (_×_; proj₁; _,_)
|
||||
open import Data.List using (List; _∷_; []; foldr; cartesianProduct; cartesianProductWith)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans)
|
||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||
open import Data.Unit using (⊤)
|
||||
|
||||
open import Language
|
||||
open import Lattice
|
||||
@ -30,19 +31,56 @@ _≟ᵍ_ 0ˢ + = no (λ ())
|
||||
_≟ᵍ_ 0ˢ - = no (λ ())
|
||||
_≟ᵍ_ 0ˢ 0ˢ = yes refl
|
||||
|
||||
-- embelish 'sign' with a top and bottom element.
|
||||
open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵍ_ as AB
|
||||
using ()
|
||||
renaming
|
||||
( AboveBelow to SignLattice
|
||||
; ≈-dec to ≈ᵍ-dec
|
||||
; ⊥ to ⊥ᵍ
|
||||
; ⊤ to ⊤ᵍ
|
||||
; [_] to [_]ᵍ
|
||||
; ≈-⊥-⊥ to ≈ᵍ-⊥ᵍ-⊥ᵍ
|
||||
; ≈-⊤-⊤ to ≈ᵍ-⊤ᵍ-⊤ᵍ
|
||||
; ≈-lift to ≈ᵍ-lift
|
||||
)
|
||||
-- 'sign' has no underlying lattice structure, so use the 'plain' above-below lattice.
|
||||
open AB.Plain using () renaming (finiteHeightLattice to finiteHeightLatticeᵍ-if-inhabited)
|
||||
|
||||
finiteHeightLatticeᵍ = finiteHeightLatticeᵍ-if-inhabited 0ˢ
|
||||
|
||||
open FiniteHeightLattice finiteHeightLatticeᵍ
|
||||
using ()
|
||||
renaming
|
||||
( _≼_ to _≼ᵍ_
|
||||
; _≈_ to _≈ᵍ_
|
||||
; _⊔_ to _⊔ᵍ_
|
||||
; ≈-refl to ≈ᵍ-refl
|
||||
)
|
||||
|
||||
plus : SignLattice → SignLattice → SignLattice
|
||||
plus ⊥ᵍ _ = ⊥ᵍ
|
||||
plus _ ⊥ᵍ = ⊥ᵍ
|
||||
plus ⊤ᵍ _ = ⊤ᵍ
|
||||
plus _ ⊤ᵍ = ⊤ᵍ
|
||||
plus [ + ]ᵍ [ + ]ᵍ = [ + ]ᵍ
|
||||
plus [ + ]ᵍ [ - ]ᵍ = ⊤ᵍ
|
||||
plus [ + ]ᵍ [ 0ˢ ]ᵍ = [ + ]ᵍ
|
||||
plus [ - ]ᵍ [ + ]ᵍ = ⊤ᵍ
|
||||
plus [ - ]ᵍ [ - ]ᵍ = [ - ]ᵍ
|
||||
plus [ - ]ᵍ [ 0ˢ ]ᵍ = [ - ]ᵍ
|
||||
plus [ 0ˢ ]ᵍ [ + ]ᵍ = [ + ]ᵍ
|
||||
plus [ 0ˢ ]ᵍ [ - ]ᵍ = [ - ]ᵍ
|
||||
plus [ 0ˢ ]ᵍ [ 0ˢ ]ᵍ = [ 0ˢ ]ᵍ
|
||||
|
||||
-- this is incredibly tedious: 125 cases per monotonicity proof, and tactics
|
||||
-- are hard. postulate for now.
|
||||
postulate plus-Monoˡ : ∀ (s₂ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ → plus s₁ s₂)
|
||||
postulate plus-Monoʳ : ∀ (s₁ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (plus s₁)
|
||||
|
||||
module _ (prog : Program) where
|
||||
open Program prog
|
||||
|
||||
-- embelish 'sign' with a top and bottom element.
|
||||
open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵍ_ as AB
|
||||
using ()
|
||||
renaming (AboveBelow to SignLattice; ≈-dec to ≈ᵍ-dec)
|
||||
-- 'sign' has no underlying lattice structure, so use the 'plain' above-below lattice.
|
||||
open AB.Plain using () renaming (finiteHeightLattice to finiteHeightLatticeᵍ-if-inhabited)
|
||||
|
||||
|
||||
finiteHeightLatticeᵍ = finiteHeightLatticeᵍ-if-inhabited 0ˢ
|
||||
|
||||
-- The variable -> sign map is a finite value-map with keys strings. Use a bundle to avoid explicitly specifying operators.
|
||||
open FixedHeightFiniteMap String SignLattice _≟ˢ_ finiteHeightLatticeᵍ vars-Unique ≈ᵍ-dec
|
||||
using ()
|
||||
|
Loading…
Reference in New Issue
Block a user