Add a proof that edges lead to 'incoming' inclusion
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
f0b0d51b48
commit
b3a62da1fb
@ -10,6 +10,7 @@ open import Data.Fin using (Fin; suc; zero)
|
||||
open import Data.Fin.Properties as FinProp using (suc-injective)
|
||||
open import Data.List as List using (List; []; _∷_)
|
||||
open import Data.List.Membership.Propositional as ListMem using ()
|
||||
open import Data.List.Membership.Propositional.Properties as ListMemProp using (∈-filter⁺)
|
||||
open import Data.List.Relation.Unary.All using (All; []; _∷_)
|
||||
open import Data.List.Relation.Unary.Any as RelAny using ()
|
||||
open import Data.Nat using (ℕ; suc)
|
||||
@ -100,3 +101,9 @@ record Program : Set where
|
||||
|
||||
incoming : State → List State
|
||||
incoming idx = List.filter (λ idx' → (idx' , idx) ∈? (Graph.edges graph)) states
|
||||
|
||||
edge⇒incoming : ∀ {s₁ s₂ : State} → (s₁ , s₂) ListMem.∈ (Graph.edges graph) →
|
||||
s₁ ListMem.∈ (incoming s₂)
|
||||
edge⇒incoming {s₁} {s₂} s₁,s₂∈es =
|
||||
∈-filter⁺ (λ s' → (s' , s₂) ∈? (Graph.edges graph))
|
||||
(states-complete s₁) s₁,s₂∈es
|
||||
|
Loading…
Reference in New Issue
Block a user