Prove that a lattice of height h1+h2 exists for products
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
acf4a04814
commit
b6292bf9bd
76
Lattice.agda
76
Lattice.agda
@ -4,11 +4,11 @@ import Data.Nat.Properties as NatProps
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym)
|
||||
open import Relation.Binary.Definitions
|
||||
open import Relation.Nullary using (Dec; ¬_)
|
||||
open import Data.Nat as Nat using (ℕ; _≤_)
|
||||
open import Data.Product using (_×_; Σ; _,_)
|
||||
open import Data.Nat as Nat using (ℕ; _≤_; _+_)
|
||||
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
|
||||
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||
open import Agda.Primitive using (lsuc; Level) renaming (_⊔_ to _⊔ℓ_)
|
||||
open import Chain using (Chain; Height; done; step)
|
||||
open import Chain using (Chain; Height; done; step; concat)
|
||||
open import Function.Definitions using (Injective)
|
||||
|
||||
record IsEquivalence {a} (A : Set a) (_≈_ : A → A → Set a) : Set a where
|
||||
@ -38,6 +38,9 @@ record IsSemilattice {a} (A : Set a)
|
||||
⊔-comm : (x y : A) → (x ⊔ y) ≈ (y ⊔ x)
|
||||
⊔-idemp : (x : A) → (x ⊔ x) ≈ x
|
||||
|
||||
≼-refl : ∀ (a : A) → a ≼ a
|
||||
≼-refl a = (a , ⊔-idemp a)
|
||||
|
||||
open IsEquivalence ≈-equiv public
|
||||
|
||||
record IsLattice {a} (A : Set a)
|
||||
@ -57,6 +60,9 @@ record IsLattice {a} (A : Set a)
|
||||
( ⊔-assoc to ⊓-assoc
|
||||
; ⊔-comm to ⊓-comm
|
||||
; ⊔-idemp to ⊓-idemp
|
||||
; _≼_ to _≽_
|
||||
; _≺_ to _≻_
|
||||
; ≼-refl to ≽-refl
|
||||
)
|
||||
|
||||
record IsFiniteHeightLattice {a} (A : Set a)
|
||||
@ -72,17 +78,20 @@ record IsFiniteHeightLattice {a} (A : Set a)
|
||||
open IsLattice isLattice public
|
||||
|
||||
module _ {a b} {A : Set a} {B : Set b}
|
||||
(_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set b)
|
||||
(_⊔₁_ : A → A → A) (_⊔₂_ : B → B → B)
|
||||
(_≼₁_ : A → A → Set a) (_≼₂_ : B → B → Set b) where
|
||||
|
||||
Monotonic : (A → B) → Set (a ⊔ℓ b)
|
||||
Monotonic f = ∀ {a₁ a₂ : A} → a₁ ≼₁ a₂ → f a₁ ≼₂ f a₂
|
||||
|
||||
module ChainMapping {a b} {A : Set a} {B : Set b}
|
||||
{_≈₁_ : A → A → Set a} {_≈₂_ : B → B → Set b}
|
||||
{_⊔₁_ : A → A → A} {_⊔₂_ : B → B → B}
|
||||
(slA : IsSemilattice A _≈₁_ _⊔₁_) (slB : IsSemilattice B _≈₂_ _⊔₂_) where
|
||||
|
||||
open IsSemilattice slA renaming (_≼_ to _≼₁_; _≺_ to _≺₁_)
|
||||
open IsSemilattice slB renaming (_≼_ to _≼₂_; _≺_ to _≺₂_)
|
||||
|
||||
Monotonic : (A → B) → Set (a ⊔ℓ b)
|
||||
Monotonic f = ∀ {a₁ a₂ : A} → a₁ ≼₁ a₂ → f a₁ ≼₂ f a₂
|
||||
|
||||
Chain-map : ∀ (f : A → B) → Monotonic f → Injective _≈₁_ _≈₂_ f →
|
||||
Chain-map : ∀ (f : A → B) → Monotonic _≼₁_ _≼₂_ f → Injective _≈₁_ _≈₂_ f →
|
||||
∀ {a₁ a₂ : A} {n : ℕ} → Chain _≺₁_ a₁ a₂ n → Chain _≺₂_ (f a₁) (f a₂) n
|
||||
Chain-map f Monotonicᶠ Injectiveᶠ done = done
|
||||
Chain-map f Monotonicᶠ Injectiveᶠ (step (a₁≼₁a , a₁̷≈₁a) aa₂) =
|
||||
@ -378,3 +387,52 @@ module IsLatticeInstances where
|
||||
; absorb-⊔-⊓ = union-intersect-absorb _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ _⊓₂_ ⊔₂-idemp ⊓₂-idemp absorb-⊔₂-⊓₂ absorb-⊓₂-⊔₂
|
||||
; absorb-⊓-⊔ = intersect-union-absorb _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ _⊓₂_ ⊔₂-idemp ⊓₂-idemp absorb-⊔₂-⊓₂ absorb-⊓₂-⊔₂
|
||||
}
|
||||
|
||||
module IsFiniteHeightLatticeInstances where
|
||||
module ForProd {a} {A B : Set a}
|
||||
(_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set a)
|
||||
(_⊔₁_ : A → A → A) (_⊓₁_ : A → A → A)
|
||||
(_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B)
|
||||
(h₁ h₂ : ℕ)
|
||||
(lA : IsFiniteHeightLattice A h₁ _≈₁_ _⊔₁_ _⊓₁_) (lB : IsFiniteHeightLattice B h₂ _≈₂_ _⊔₂_ _⊓₂_) where
|
||||
|
||||
module ProdLattice = IsLatticeInstances.ForProd _≈₁_ _≈₂_ _⊔₁_ _⊓₁_ _⊔₂_ _⊓₂_ (IsFiniteHeightLattice.isLattice lA) (IsFiniteHeightLattice.isLattice lB)
|
||||
open ProdLattice using (_⊔_; _⊓_; _≈_) public
|
||||
open IsLattice ProdLattice.ProdIsLattice using (_≼_; _≺_)
|
||||
open IsFiniteHeightLattice lA using () renaming (⊔-idemp to ⊔₁-idemp; _≼_ to _≼₁_)
|
||||
open IsFiniteHeightLattice lB using () renaming (⊔-idemp to ⊔₂-idemp; _≼_ to _≼₂_)
|
||||
|
||||
module ChainMapping₁ = ChainMapping (IsFiniteHeightLattice.joinSemilattice lA) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice)
|
||||
module ChainMapping₂ = ChainMapping (IsFiniteHeightLattice.joinSemilattice lB) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice)
|
||||
|
||||
private
|
||||
a,∙-Monotonic : ∀ (a : A) → Monotonic _≼₂_ _≼_ (λ b → (a , b))
|
||||
a,∙-Monotonic a {b₁} {b₂} (b , b₁⊔b≈b₂) = ((a , b) , (⊔₁-idemp a , b₁⊔b≈b₂))
|
||||
|
||||
∙,b-Monotonic : ∀ (b : B) → Monotonic _≼₁_ _≼_ (λ a → (a , b))
|
||||
∙,b-Monotonic b {a₁} {a₂} (a , a₁⊔a≈a₂) = ((a , b) , (a₁⊔a≈a₂ , ⊔₂-idemp b))
|
||||
|
||||
amin : A
|
||||
amin = proj₁ (proj₁ (proj₁ (IsFiniteHeightLattice.fixedHeight lA)))
|
||||
|
||||
amax : A
|
||||
amax = proj₂ (proj₁ (proj₁ (IsFiniteHeightLattice.fixedHeight lA)))
|
||||
|
||||
bmin : B
|
||||
bmin = proj₁ (proj₁ (proj₁ (IsFiniteHeightLattice.fixedHeight lB)))
|
||||
|
||||
bmax : B
|
||||
bmax = proj₂ (proj₁ (proj₁ (IsFiniteHeightLattice.fixedHeight lB)))
|
||||
|
||||
ProdIsFiniteHeightLattice : IsFiniteHeightLattice (A × B) (h₁ + h₂) _≈_ _⊔_ _⊓_
|
||||
ProdIsFiniteHeightLattice = record
|
||||
{ isLattice = ProdLattice.ProdIsLattice
|
||||
; fixedHeight =
|
||||
( ( ((amin , bmin) , (amax , bmax))
|
||||
, concat _≺_
|
||||
(ChainMapping₁.Chain-map (λ a → (a , bmin)) (∙,b-Monotonic _) proj₁ (proj₂ (proj₁ (IsFiniteHeightLattice.fixedHeight lA))))
|
||||
(ChainMapping₂.Chain-map (λ b → (amax , b)) (a,∙-Monotonic _) proj₂ (proj₂ (proj₁ (IsFiniteHeightLattice.fixedHeight lB))))
|
||||
)
|
||||
, _
|
||||
)
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user