Clean up how proofs of fixed height are imported

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2025-01-04 22:34:49 -08:00
parent 1432dfa669
commit c0238fea25
2 changed files with 10 additions and 13 deletions

View File

@ -65,7 +65,7 @@ open IsLattice isLatticeᵛ
; ⊔-idemp to ⊔ᵛ-idemp
)
public
open Lattice.FiniteMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight String L vars vars-Unique
open VariableValuesFiniteMap.FixedHeight vars-Unique
using ()
renaming
( isFiniteHeightLattice to isFiniteHeightLatticeᵛ
@ -93,8 +93,7 @@ open StateVariablesFiniteMap
; ≈-sym to ≈ᵐ-sym
)
public
open Lattice.FiniteMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight State VariableValues states states-Unique
open StateVariablesFiniteMap.FixedHeight states-Unique
using ()
renaming
( isFiniteHeightLattice to isFiniteHeightLatticeᵐ

View File

@ -281,7 +281,7 @@ Provenance-union fm₁@(m₁ , ks₁≡ks) fm₂@(m₂ , ks₂≡ks) {k} {v} k,v
... | bothᵘ {v₁} {v₂} (single k,v₁∈m₁) (single k,v₂∈m₂) =
((v₁ , v₂) , (refl , (k,v₁∈m₁ , k,v₂∈m₂)))
module IterProdIsomorphism where
private module IterProdIsomorphism where
open WithKeys
open import Data.Unit using (tt)
open import Lattice.Unit using ()
@ -323,15 +323,12 @@ module IterProdIsomorphism where
in
(((k , v) fm' , push k≢fm' ufm') , kvs≡ks)
_≈ⁱᵖ_ : {n : } IterProd n IterProd n Set
_≈ⁱᵖ_ {n} = IP._≈_ {n}
private
_≈ⁱᵖ_ : {n : } IterProd n IterProd n Set
_≈ⁱᵖ_ {n} = IP._≈_ {n}
_⊔ⁱᵖ_ : {ks : List A}
IterProd (length ks) IterProd (length ks) IterProd (length ks)
_⊔ⁱᵖ_ {ks} = IP._⊔_ {length ks}
_⊔ⁱᵖ_ : {ks : List A}
IterProd (length ks) IterProd (length ks) IterProd (length ks)
_⊔ⁱᵖ_ {ks} = IP._⊔_ {length ks}
to-build : {b : B} {ks : List A} (uks : Unique ks)
let fm = to uks (IP.build b tt (length ks))
@ -615,7 +612,7 @@ module IterProdIsomorphism where
in
(v' , (v₁⊔v₂≈v' , there v'∈fm'))
module WithUniqueKeysAndFixedHeight {ks : List A} (uks : Unique ks) {{≈₂-Decidable : IsDecidable _≈₂_}} {h₂ : } {{fhB : FixedHeight₂ h₂}} where
module FixedHeight {ks : List A} {{≈₂-Decidable : IsDecidable _≈₂_}} {h₂ : } {{fhB : FixedHeight₂ h₂}} (uks : Unique ks) where
import Isomorphism
open Isomorphism.TransportFiniteHeight
(IP.isFiniteHeightLattice {k = length ks} {{fhB = fixedHeightᵘ}}) (isLattice ks)
@ -635,3 +632,4 @@ module IterProdIsomorphism where
to-build uks k v k,v∈⊥
open WithKeys ks public
module FixedHeight = IterProdIsomorphism.FixedHeight