Clean up how proofs of fixed height are imported
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
1432dfa669
commit
c0238fea25
@ -65,7 +65,7 @@ open IsLattice isLatticeᵛ
|
|||||||
; ⊔-idemp to ⊔ᵛ-idemp
|
; ⊔-idemp to ⊔ᵛ-idemp
|
||||||
)
|
)
|
||||||
public
|
public
|
||||||
open Lattice.FiniteMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight String L vars vars-Unique
|
open VariableValuesFiniteMap.FixedHeight vars-Unique
|
||||||
using ()
|
using ()
|
||||||
renaming
|
renaming
|
||||||
( isFiniteHeightLattice to isFiniteHeightLatticeᵛ
|
( isFiniteHeightLattice to isFiniteHeightLatticeᵛ
|
||||||
@ -93,8 +93,7 @@ open StateVariablesFiniteMap
|
|||||||
; ≈-sym to ≈ᵐ-sym
|
; ≈-sym to ≈ᵐ-sym
|
||||||
)
|
)
|
||||||
public
|
public
|
||||||
|
open StateVariablesFiniteMap.FixedHeight states-Unique
|
||||||
open Lattice.FiniteMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight State VariableValues states states-Unique
|
|
||||||
using ()
|
using ()
|
||||||
renaming
|
renaming
|
||||||
( isFiniteHeightLattice to isFiniteHeightLatticeᵐ
|
( isFiniteHeightLattice to isFiniteHeightLatticeᵐ
|
||||||
|
@ -281,7 +281,7 @@ Provenance-union fm₁@(m₁ , ks₁≡ks) fm₂@(m₂ , ks₂≡ks) {k} {v} k,v
|
|||||||
... | bothᵘ {v₁} {v₂} (single k,v₁∈m₁) (single k,v₂∈m₂) =
|
... | bothᵘ {v₁} {v₂} (single k,v₁∈m₁) (single k,v₂∈m₂) =
|
||||||
((v₁ , v₂) , (refl , (k,v₁∈m₁ , k,v₂∈m₂)))
|
((v₁ , v₂) , (refl , (k,v₁∈m₁ , k,v₂∈m₂)))
|
||||||
|
|
||||||
module IterProdIsomorphism where
|
private module IterProdIsomorphism where
|
||||||
open WithKeys
|
open WithKeys
|
||||||
open import Data.Unit using (tt)
|
open import Data.Unit using (tt)
|
||||||
open import Lattice.Unit using ()
|
open import Lattice.Unit using ()
|
||||||
@ -323,8 +323,6 @@ module IterProdIsomorphism where
|
|||||||
in
|
in
|
||||||
(((k , v) ∷ fm' , push k≢fm' ufm') , kvs≡ks)
|
(((k , v) ∷ fm' , push k≢fm' ufm') , kvs≡ks)
|
||||||
|
|
||||||
|
|
||||||
private
|
|
||||||
_≈ⁱᵖ_ : ∀ {n : ℕ} → IterProd n → IterProd n → Set
|
_≈ⁱᵖ_ : ∀ {n : ℕ} → IterProd n → IterProd n → Set
|
||||||
_≈ⁱᵖ_ {n} = IP._≈_ {n}
|
_≈ⁱᵖ_ {n} = IP._≈_ {n}
|
||||||
|
|
||||||
@ -332,7 +330,6 @@ module IterProdIsomorphism where
|
|||||||
IterProd (length ks) → IterProd (length ks) → IterProd (length ks)
|
IterProd (length ks) → IterProd (length ks) → IterProd (length ks)
|
||||||
_⊔ⁱᵖ_ {ks} = IP._⊔_ {length ks}
|
_⊔ⁱᵖ_ {ks} = IP._⊔_ {length ks}
|
||||||
|
|
||||||
|
|
||||||
to-build : ∀ {b : B} {ks : List A} (uks : Unique ks) →
|
to-build : ∀ {b : B} {ks : List A} (uks : Unique ks) →
|
||||||
let fm = to uks (IP.build b tt (length ks))
|
let fm = to uks (IP.build b tt (length ks))
|
||||||
in ∀ (k : A) (v : B) → (k , v) ∈ᵐ fm → v ≡ b
|
in ∀ (k : A) (v : B) → (k , v) ∈ᵐ fm → v ≡ b
|
||||||
@ -615,7 +612,7 @@ module IterProdIsomorphism where
|
|||||||
in
|
in
|
||||||
(v' , (v₁⊔v₂≈v' , there v'∈fm'))
|
(v' , (v₁⊔v₂≈v' , there v'∈fm'))
|
||||||
|
|
||||||
module WithUniqueKeysAndFixedHeight {ks : List A} (uks : Unique ks) {{≈₂-Decidable : IsDecidable _≈₂_}} {h₂ : ℕ} {{fhB : FixedHeight₂ h₂}} where
|
module FixedHeight {ks : List A} {{≈₂-Decidable : IsDecidable _≈₂_}} {h₂ : ℕ} {{fhB : FixedHeight₂ h₂}} (uks : Unique ks) where
|
||||||
import Isomorphism
|
import Isomorphism
|
||||||
open Isomorphism.TransportFiniteHeight
|
open Isomorphism.TransportFiniteHeight
|
||||||
(IP.isFiniteHeightLattice {k = length ks} {{fhB = fixedHeightᵘ}}) (isLattice ks)
|
(IP.isFiniteHeightLattice {k = length ks} {{fhB = fixedHeightᵘ}}) (isLattice ks)
|
||||||
@ -635,3 +632,4 @@ module IterProdIsomorphism where
|
|||||||
to-build uks k v k,v∈⊥
|
to-build uks k v k,v∈⊥
|
||||||
|
|
||||||
open WithKeys ks public
|
open WithKeys ks public
|
||||||
|
module FixedHeight = IterProdIsomorphism.FixedHeight
|
||||||
|
Loading…
Reference in New Issue
Block a user