Clean up how proofs of fixed height are imported

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2025-01-04 22:34:49 -08:00
parent 1432dfa669
commit c0238fea25
2 changed files with 10 additions and 13 deletions

View File

@ -65,7 +65,7 @@ open IsLattice isLatticeᵛ
; ⊔-idemp to ⊔ᵛ-idemp ; ⊔-idemp to ⊔ᵛ-idemp
) )
public public
open Lattice.FiniteMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight String L vars vars-Unique open VariableValuesFiniteMap.FixedHeight vars-Unique
using () using ()
renaming renaming
( isFiniteHeightLattice to isFiniteHeightLatticeᵛ ( isFiniteHeightLattice to isFiniteHeightLatticeᵛ
@ -93,8 +93,7 @@ open StateVariablesFiniteMap
; ≈-sym to ≈ᵐ-sym ; ≈-sym to ≈ᵐ-sym
) )
public public
open StateVariablesFiniteMap.FixedHeight states-Unique
open Lattice.FiniteMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight State VariableValues states states-Unique
using () using ()
renaming renaming
( isFiniteHeightLattice to isFiniteHeightLatticeᵐ ( isFiniteHeightLattice to isFiniteHeightLatticeᵐ

View File

@ -281,7 +281,7 @@ Provenance-union fm₁@(m₁ , ks₁≡ks) fm₂@(m₂ , ks₂≡ks) {k} {v} k,v
... | bothᵘ {v₁} {v₂} (single k,v₁∈m₁) (single k,v₂∈m₂) = ... | bothᵘ {v₁} {v₂} (single k,v₁∈m₁) (single k,v₂∈m₂) =
((v₁ , v₂) , (refl , (k,v₁∈m₁ , k,v₂∈m₂))) ((v₁ , v₂) , (refl , (k,v₁∈m₁ , k,v₂∈m₂)))
module IterProdIsomorphism where private module IterProdIsomorphism where
open WithKeys open WithKeys
open import Data.Unit using (tt) open import Data.Unit using (tt)
open import Lattice.Unit using () open import Lattice.Unit using ()
@ -323,8 +323,6 @@ module IterProdIsomorphism where
in in
(((k , v) fm' , push k≢fm' ufm') , kvs≡ks) (((k , v) fm' , push k≢fm' ufm') , kvs≡ks)
private
_≈ⁱᵖ_ : {n : } IterProd n IterProd n Set _≈ⁱᵖ_ : {n : } IterProd n IterProd n Set
_≈ⁱᵖ_ {n} = IP._≈_ {n} _≈ⁱᵖ_ {n} = IP._≈_ {n}
@ -332,7 +330,6 @@ module IterProdIsomorphism where
IterProd (length ks) IterProd (length ks) IterProd (length ks) IterProd (length ks) IterProd (length ks) IterProd (length ks)
_⊔ⁱᵖ_ {ks} = IP._⊔_ {length ks} _⊔ⁱᵖ_ {ks} = IP._⊔_ {length ks}
to-build : {b : B} {ks : List A} (uks : Unique ks) to-build : {b : B} {ks : List A} (uks : Unique ks)
let fm = to uks (IP.build b tt (length ks)) let fm = to uks (IP.build b tt (length ks))
in (k : A) (v : B) (k , v) ∈ᵐ fm v b in (k : A) (v : B) (k , v) ∈ᵐ fm v b
@ -615,7 +612,7 @@ module IterProdIsomorphism where
in in
(v' , (v₁⊔v₂≈v' , there v'∈fm')) (v' , (v₁⊔v₂≈v' , there v'∈fm'))
module WithUniqueKeysAndFixedHeight {ks : List A} (uks : Unique ks) {{≈₂-Decidable : IsDecidable _≈₂_}} {h₂ : } {{fhB : FixedHeight₂ h₂}} where module FixedHeight {ks : List A} {{≈₂-Decidable : IsDecidable _≈₂_}} {h₂ : } {{fhB : FixedHeight₂ h₂}} (uks : Unique ks) where
import Isomorphism import Isomorphism
open Isomorphism.TransportFiniteHeight open Isomorphism.TransportFiniteHeight
(IP.isFiniteHeightLattice {k = length ks} {{fhB = fixedHeightᵘ}}) (isLattice ks) (IP.isFiniteHeightLattice {k = length ks} {{fhB = fixedHeightᵘ}}) (isLattice ks)
@ -635,3 +632,4 @@ module IterProdIsomorphism where
to-build uks k v k,v∈⊥ to-build uks k v k,v∈⊥
open WithKeys ks public open WithKeys ks public
module FixedHeight = IterProdIsomorphism.FixedHeight