Rewrite Forward analysis to use statement-based evaluators.

To keep old (expression-based) analyses working, switch to using
instance search and provide "adapters" that auto-construct statement
analyzers from expression analyzers.

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2024-12-31 17:31:01 -08:00
parent f01df5af4b
commit c2c04e3ecd
5 changed files with 462 additions and 342 deletions

View File

@ -8,208 +8,28 @@ module Analysis.Forward
(≈ˡ-dec : IsDecidable _≈ˡ_) where
open import Data.Empty using (⊥-elim)
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
open import Data.Nat using (suc)
open import Data.Product using (_×_; proj₁; proj₂; _,_)
open import Data.Sum using (inj₁; inj₂)
open import Data.List using (List; _∷_; []; foldr; foldl; cartesianProduct; cartesianProductWith)
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
open import Data.String using (String)
open import Data.Product using (_,_)
open import Data.List using (_∷_; []; foldr; foldl)
open import Data.List.Relation.Unary.Any as Any using ()
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym; trans; subst)
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Data.Unit using ()
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym; subst)
open import Relation.Nullary using (yes; no)
open import Function using (_∘_; flip)
import Chain
open import Utils using (Pairwise; _⇒_; __)
import Lattice.FiniteValueMap
open IsFiniteHeightLattice isFiniteHeightLatticeˡ
using ()
renaming
( isLattice to isLatticeˡ
; fixedHeight to fixedHeightˡ
; _≼_ to _≼ˡ_
; ≈-sym to ≈ˡ-sym
)
using () renaming (isLattice to isLatticeˡ)
module WithProg (prog : Program) where
open import Analysis.Forward.Lattices isFiniteHeightLatticeˡ ≈ˡ-dec prog
open import Analysis.Forward.Evaluation isFiniteHeightLatticeˡ ≈ˡ-dec prog
open Program prog
-- The variable -> abstract value (e.g. sign) map is a finite value-map
-- with keys strings. Use a bundle to avoid explicitly specifying operators.
-- It's helpful to export these via 'public' since consumers tend to
-- use various variable lattice operations.
module VariableValuesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟ˢ_ isLatticeˡ vars
open VariableValuesFiniteMap
using ()
renaming
( FiniteMap to VariableValues
; isLattice to isLatticeᵛ
; _≈_ to _≈ᵛ_
; _⊔_ to _⊔ᵛ_
; _≼_ to _≼ᵛ_
; ≈₂-dec⇒≈-dec to ≈ˡ-dec⇒≈ᵛ-dec
; _∈_ to _∈ᵛ_
; _∈k_ to _∈kᵛ_
; _updating_via_ to _updatingᵛ_via_
; locate to locateᵛ
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ
; ∈k-dec to ∈k-decᵛ
; all-equal-keys to all-equal-keysᵛ
)
public
open IsLattice isLatticeᵛ
using ()
renaming
( ⊔-Monotonicˡ to ⊔ᵛ-Monotonicˡ
; ⊔-Monotonicʳ to ⊔ᵛ-Monotonicʳ
; ⊔-idemp to ⊔ᵛ-idemp
)
open Lattice.FiniteValueMap.IterProdIsomorphism _≟ˢ_ isLatticeˡ
using ()
renaming
( Provenance-union to Provenance-unionᵐ
)
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟ˢ_ isLatticeˡ vars-Unique ≈ˡ-dec _ fixedHeightˡ
using ()
renaming
( isFiniteHeightLattice to isFiniteHeightLatticeᵛ
; ⊥-contains-bottoms to ⊥ᵛ-contains-bottoms
)
private
≈ᵛ-dec = ≈ˡ-dec⇒≈ᵛ-dec ≈ˡ-dec
joinSemilatticeᵛ = IsFiniteHeightLattice.joinSemilattice isFiniteHeightLatticeᵛ
fixedHeightᵛ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵛ
⊥ᵛ = Chain.Height.⊥ fixedHeightᵛ
-- Finally, the map we care about is (state -> (variables -> value)). Bring that in.
module StateVariablesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟_ isLatticeᵛ states
open StateVariablesFiniteMap
using (_[_]; []-∈; m₁≼m₂⇒m₁[ks]≼m₂[ks]; m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂)
renaming
( FiniteMap to StateVariables
; isLattice to isLatticeᵐ
; _≈_ to _≈ᵐ_
; _∈_ to _∈ᵐ_
; _∈k_ to _∈kᵐ_
; locate to locateᵐ
; _≼_ to _≼ᵐ_
; ≈₂-dec⇒≈-dec to ≈ᵛ-dec⇒≈ᵐ-dec
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ
)
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟_ isLatticeᵛ states-Unique ≈ᵛ-dec _ fixedHeightᵛ
using ()
renaming
( isFiniteHeightLattice to isFiniteHeightLatticeᵐ
)
open IsFiniteHeightLattice isFiniteHeightLatticeᵐ
using ()
renaming
( ≈-sym to ≈ᵐ-sym
)
private
≈ᵐ-dec = ≈ᵛ-dec⇒≈ᵐ-dec ≈ᵛ-dec
fixedHeightᵐ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵐ
-- We now have our (state -> (variables -> value)) map.
-- Define a couple of helpers to retrieve values from it. Specifically,
-- since the State type is as specific as possible, it's always possible to
-- retrieve the variable values at each state.
states-in-Map : (s : State) (sv : StateVariables) s ∈kᵐ sv
states-in-Map s sv@(m , ksv≡states) rewrite ksv≡states = states-complete s
variablesAt : State StateVariables VariableValues
variablesAt s sv = proj₁ (locateᵐ {s} {sv} (states-in-Map s sv))
variablesAt-∈ : (s : State) (sv : StateVariables) (s , variablesAt s sv) ∈ᵐ sv
variablesAt-∈ s sv = proj₂ (locateᵐ {s} {sv} (states-in-Map s sv))
variablesAt-≈ : s sv₁ sv₂ sv₁ ≈ᵐ sv₂ variablesAt s sv₁ ≈ᵛ variablesAt s sv₂
variablesAt-≈ s sv₁ sv₂ sv₁≈sv₂ =
m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ sv₁ sv₂ sv₁≈sv₂
(states-in-Map s sv₁) (states-in-Map s sv₂)
-- build up the 'join' function, which follows from Exercise 4.26's
--
-- L₁ → (A → L₂)
--
-- Construction, with L₁ = (A → L₂), and f = id
joinForKey : State StateVariables VariableValues
joinForKey k states = foldr _⊔ᵛ_ ⊥ᵛ (states [ incoming k ])
-- The per-key join is made up of map key accesses (which are monotonic)
-- and folds using the join operation (also monotonic)
joinForKey-Mono : (k : State) Monotonic _≼ᵐ_ _≼ᵛ_ (joinForKey k)
joinForKey-Mono k {fm₁} {fm₂} fm₁≼fm₂ =
foldr-Mono joinSemilatticeᵛ joinSemilatticeᵛ (fm₁ [ incoming k ]) (fm₂ [ incoming k ]) _⊔ᵛ_ ⊥ᵛ ⊥ᵛ
(m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ (incoming k) fm₁≼fm₂)
(⊔ᵛ-idemp ⊥ᵛ) ⊔ᵛ-Monotonicʳ ⊔ᵛ-Monotonicˡ
-- The name f' comes from the formulation of Exercise 4.26.
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x x) (λ a₁≼a₂ a₁≼a₂) joinForKey joinForKey-Mono states
using ()
renaming
( f' to joinAll
; f'-Monotonic to joinAll-Mono
; f'-k∈ks-≡ to joinAll-k∈ks-≡
)
private
variablesAt-joinAll : (s : State) (sv : StateVariables)
variablesAt s (joinAll sv) joinForKey s sv
variablesAt-joinAll s sv
with (vs , s,vs∈usv) locateᵐ {s} {joinAll sv} (states-in-Map s (joinAll sv)) =
joinAll-k∈ks-≡ {l = sv} (states-complete s) s,vs∈usv
record Evaluator : Set where
field
eval : Expr VariableValues L
eval-Mono : (e : Expr) Monotonic _≼ᵛ_ _≼ˡ_ (eval e)
-- With 'join' in hand, we need to perform abstract evaluation.
private module WithEvaluator {{evaluator : Evaluator}} where
open Evaluator evaluator
-- For a particular evaluation function, we need to perform an evaluation
-- for an assignment, and update the corresponding key. Use Exercise 4.26's
-- generalized update to set the single key's value.
module _ (k : String) (e : Expr) where
open VariableValuesFiniteMap.GeneralizedUpdate vars isLatticeᵛ (λ x x) (λ a₁≼a₂ a₁≼a₂) (λ _ eval e) (λ _ {vs₁} {vs₂} vs₁≼vs₂ eval-Mono e {vs₁} {vs₂} vs₁≼vs₂) (k [])
using ()
renaming
( f' to updateVariablesFromExpression
; f'-Monotonic to updateVariablesFromExpression-Mono
; f'-k∈ks-≡ to updateVariablesFromExpression-k∈ks-≡
; f'-k∉ks-backward to updateVariablesFromExpression-k∉ks-backward
)
public
-- The per-state update function makes use of the single-key setter,
-- updateVariablesFromExpression, for the case where the statement
-- is an assignment.
--
-- This per-state function adjusts the variables in that state,
-- also monotonically; we derive the for-each-state update from
-- the Exercise 4.26 again.
updateVariablesFromStmt : BasicStmt VariableValues VariableValues
updateVariablesFromStmt (k e) vs = updateVariablesFromExpression k e vs
updateVariablesFromStmt noop vs = vs
updateVariablesFromStmt-Monoʳ : (bs : BasicStmt) Monotonic _≼ᵛ_ _≼ᵛ_ (updateVariablesFromStmt bs)
updateVariablesFromStmt-Monoʳ (k e) {vs₁} {vs₂} vs₁≼vs₂ = updateVariablesFromExpression-Mono k e {vs₁} {vs₂} vs₁≼vs₂
updateVariablesFromStmt-Monoʳ noop vs₁≼vs₂ = vs₁≼vs₂
private module WithStmtEvaluator {{evaluator : StmtEvaluator}} where
open StmtEvaluator evaluator
updateVariablesForState : State StateVariables VariableValues
updateVariablesForState s sv =
foldl (flip updateVariablesFromStmt) (variablesAt s sv) (code s)
foldl (flip (eval s)) (variablesAt s sv) (code s)
updateVariablesForState-Monoʳ : (s : State) Monotonic _≼ᵐ_ _≼ᵛ_ (updateVariablesForState s)
updateVariablesForState-Monoʳ s {sv₁} {sv₂} sv₁≼sv₂ =
@ -220,7 +40,7 @@ module WithProg (prog : Program) where
vs₁≼vs₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ sv₁ sv₂ sv₁≼sv₂ s,vs₁∈sv₁ s,vs₂∈sv₂
in
foldl-Mono' (IsLattice.joinSemilattice isLatticeᵛ) bss
(flip updateVariablesFromStmt) updateVariablesFromStmt-Monoʳ
(flip (eval s)) (eval-Monoʳ s)
vs₁≼vs₂
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x x) (λ a₁≼a₂ a₁≼a₂) updateVariablesForState updateVariablesForState-Monoʳ states
@ -256,104 +76,25 @@ module WithProg (prog : Program) where
with (vs , s,vs∈usv) locateᵐ {s} {updateAll sv} (states-in-Map s (updateAll sv)) =
updateAll-k∈ks-≡ {l = sv} (states-complete s) s,vs∈usv
open WithEvaluator
open WithEvaluator using (result; analyze; result≈analyze-result) public
module WithValidInterpretation {{latticeInterpretationˡ : LatticeInterpretation isLatticeˡ}}
{{validEvaluator : ValidStmtEvaluator evaluator latticeInterpretationˡ}} where
open ValidStmtEvaluator validEvaluator
private module _ {{latticeInterpretationˡ : LatticeInterpretation isLatticeˡ}} where
open LatticeInterpretation latticeInterpretationˡ
using ()
renaming
( ⟦_⟧ to ⟦_⟧ˡ
; ⟦⟧-respects-≈ to ⟦⟧ˡ-respects-≈ˡ
; ⟦⟧-⊔- to ⟦⟧ˡ-⊔ˡ-
)
public
⟦_⟧ᵛ : VariableValues Env Set
⟦_⟧ᵛ vs ρ = {k l} (k , l) ∈ᵛ vs {v} (k , v) Language.∈ ρ l ⟧ˡ v
⟦⊥ᵛ⟧ᵛ∅ : ⊥ᵛ ⟧ᵛ []
⟦⊥ᵛ⟧ᵛ∅ _ ()
⟦⟧ᵛ-respects-≈ᵛ : {vs₁ vs₂ : VariableValues} vs₁ ≈ᵛ vs₂ vs₁ ⟧ᵛ vs₂ ⟧ᵛ
⟦⟧ᵛ-respects-≈ᵛ {m₁ , _} {m₂ , _}
(m₁⊆m₂ , m₂⊆m₁) ρ ⟦vs₁⟧ρ {k} {l} k,l∈m₂ {v} k,v∈ρ =
let
(l' , (l≈l' , k,l'∈m₁)) = m₂⊆m₁ _ _ k,l∈m₂
⟦l'⟧v = ⟦vs₁⟧ρ k,l'∈m₁ k,v∈ρ
in
⟦⟧ˡ-respects-≈ˡ (≈ˡ-sym l≈l') v ⟦l'⟧v
⟦⟧ᵛ-⊔ᵛ- : {vs₁ vs₂ : VariableValues} ( vs₁ ⟧ᵛ vs₂ ⟧ᵛ) vs₁ ⊔ᵛ vs₂ ⟧ᵛ
⟦⟧ᵛ-⊔ᵛ- {vs₁} {vs₂} ρ ⟦vs₁⟧ρ⟦vs₂⟧ρ {k} {l} k,l∈vs₁₂ {v} k,v∈ρ
with ((l₁ , l₂) , (refl , (k,l₁∈vs₁ , k,l₂∈vs₂)))
Provenance-unionᵐ vs₁ vs₂ k,l∈vs₁₂
with ⟦vs₁⟧ρ⟦vs₂⟧ρ
... | inj₁ ⟦vs₁⟧ρ = ⟦⟧ˡ-⊔ˡ- {l₁} {l₂} v (inj₁ (⟦vs₁⟧ρ k,l₁∈vs₁ k,v∈ρ))
... | inj₂ ⟦vs₂⟧ρ = ⟦⟧ˡ-⊔ˡ- {l₁} {l₂} v (inj₂ (⟦vs₂⟧ρ k,l₂∈vs₂ k,v∈ρ))
⟦⟧ᵛ-foldr : {vs : VariableValues} {vss : List VariableValues} {ρ : Env}
vs ⟧ᵛ ρ vs ∈ˡ vss foldr _⊔ᵛ_ ⊥ᵛ vss ⟧ᵛ ρ
⟦⟧ᵛ-foldr {vs} {vs vss'} {ρ = ρ} ⟦vs⟧ρ (Any.here refl) =
⟦⟧ᵛ-⊔ᵛ- {vs₁ = vs} {vs₂ = foldr _⊔ᵛ_ ⊥ᵛ vss'} ρ (inj₁ ⟦vs⟧ρ)
⟦⟧ᵛ-foldr {vs} {vs' vss'} {ρ = ρ} ⟦vs⟧ρ (Any.there vs∈vss') =
⟦⟧ᵛ-⊔ᵛ- {vs₁ = vs'} {vs₂ = foldr _⊔ᵛ_ ⊥ᵛ vss'} ρ
(inj₂ (⟦⟧ᵛ-foldr ⟦vs⟧ρ vs∈vss'))
module _ {{evaluator : Evaluator}} {{interpretation : LatticeInterpretation isLatticeˡ}} where
open Evaluator evaluator
open LatticeInterpretation interpretation
IsValid : Set
IsValid = {vs ρ e v} ρ , e ⇒ᵉ v vs ⟧ᵛ ρ eval e vs ⟧ˡ v
record ValidInterpretation : Set where
field
{{evaluator}} : Evaluator
{{interpretation}} : LatticeInterpretation isLatticeˡ
open Evaluator evaluator public
open LatticeInterpretation interpretation public
field
valid : IsValid
module WithValidInterpretation {{validInterpretation : ValidInterpretation}} where
open ValidInterpretation validInterpretation
updateVariablesFromStmt-matches : {bs vs ρ₁ ρ₂} ρ₁ , bs ⇒ᵇ ρ₂ vs ⟧ᵛ ρ₁ updateVariablesFromStmt bs vs ⟧ᵛ ρ₂
updateVariablesFromStmt-matches {_} {vs} {ρ₁} {ρ₁} (⇒ᵇ-noop ρ₁) ⟦vs⟧ρ = ⟦vs⟧ρ
updateVariablesFromStmt-matches {_} {vs} {ρ₁} {_} (⇒ᵇ-← ρ₁ k e v ρ,e⇒v) ⟦vs⟧ρ {k'} {l} k',l∈vs' {v'} k',v'∈ρ₂
with k ≟ˢ k' | k',v'∈ρ₂
... | yes refl | here _ v _
rewrite updateVariablesFromExpression-k∈ks-≡ k e {l = vs} (Any.here refl) k',l∈vs' =
valid ρ,e⇒v ⟦vs⟧ρ
... | yes k≡k' | there _ _ _ _ _ k'≢k _ = ⊥-elim (k'≢k (sym k≡k'))
... | no k≢k' | here _ _ _ = ⊥-elim (k≢k' refl)
... | no k≢k' | there _ _ _ _ _ _ k',v'∈ρ₁ =
let
k'∉[k] = (λ { (Any.here refl) k≢k' refl })
k',l∈vs = updateVariablesFromExpression-k∉ks-backward k e {l = vs} k'∉[k] k',l∈vs'
in
⟦vs⟧ρ k',l∈vs k',v'∈ρ₁
updateVariablesFromStmt-fold-matches : {bss vs ρ₁ ρ₂} ρ₁ , bss ⇒ᵇˢ ρ₂ vs ⟧ᵛ ρ₁ foldl (flip updateVariablesFromStmt) vs bss ⟧ᵛ ρ₂
updateVariablesFromStmt-fold-matches [] ⟦vs⟧ρ = ⟦vs⟧ρ
updateVariablesFromStmt-fold-matches {bs bss'} {vs} {ρ₁} {ρ₂} (ρ₁,bs⇒ρ ρ,bss'⇒ρ₂) ⟦vs⟧ρ =
updateVariablesFromStmt-fold-matches
{bss'} {updateVariablesFromStmt bs vs} ρ,bss'⇒ρ₂
(updateVariablesFromStmt-matches ρ₁,bs⇒ρ ⟦vs⟧ρ)
eval-fold-valid : {s bss vs ρ₁ ρ₂} ρ₁ , bss ⇒ᵇˢ ρ₂ vs ⟧ᵛ ρ₁ foldl (flip (eval s)) vs bss ⟧ᵛ ρ₂
eval-fold-valid {_} [] ⟦vs⟧ρ = ⟦vs⟧ρ
eval-fold-valid {s} {bs bss'} {vs} {ρ₁} {ρ₂} (ρ₁,bs⇒ρ ρ,bss'⇒ρ₂) ⟦vs⟧ρ =
eval-fold-valid
{bss = bss'} {eval s bs vs} ρ,bss'⇒ρ₂
(valid ρ₁,bs⇒ρ ⟦vs⟧ρ)
updateVariablesForState-matches : {s sv ρ₁ ρ₂} ρ₁ , (code s) ⇒ᵇˢ ρ₂ variablesAt s sv ⟧ᵛ ρ₁ updateVariablesForState s sv ⟧ᵛ ρ₂
updateVariablesForState-matches =
updateVariablesFromStmt-fold-matches
updateVariablesForState-matches = eval-fold-valid
updateAll-matches : {s sv ρ₁ ρ₂} ρ₁ , (code s) ⇒ᵇˢ ρ₂ variablesAt s sv ⟧ᵛ ρ₁ variablesAt s (updateAll sv) ⟧ᵛ ρ₂
updateAll-matches {s} {sv} ρ₁,bss⇒ρ ⟦vs⟧ρ
rewrite variablesAt-updateAll s sv =
updateVariablesForState-matches {s} {sv} ρ₁,bss⇒ρ ⟦vs⟧ρ
stepTrace : {s₁ ρ₁ ρ₂} joinForKey s₁ result ⟧ᵛ ρ₁ ρ₁ , (code s₁) ⇒ᵇˢ ρ₂ variablesAt s₁ result ⟧ᵛ ρ₂
stepTrace {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ ρ₁,bss⇒ρ =
let
@ -398,4 +139,5 @@ module WithProg (prog : Program) where
analyze-correct : {ρ : Env} [] , rootStmt ⇒ˢ ρ variablesAt finalState result ⟧ᵛ ρ
analyze-correct {ρ} ∅,s⇒ρ = walkTrace {initialState} {finalState} {[]} {ρ} ⟦joinAll-initialState⟧ᵛ∅ (trace ∅,s⇒ρ)
open WithValidInterpretation using (analyze-correct) public
open WithStmtEvaluator using (result; analyze; result≈analyze-result) public
open WithStmtEvaluator.WithValidInterpretation using (analyze-correct) public

View File

@ -0,0 +1,100 @@
open import Language hiding (_[_])
open import Lattice
module Analysis.Forward.Adapters
{L : Set} {h}
{_≈ˡ_ : L L Set} {_⊔ˡ_ : L L L} {_⊓ˡ_ : L L L}
(isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
(≈ˡ-dec : IsDecidable _≈ˡ_)
(prog : Program) where
open import Analysis.Forward.Lattices isFiniteHeightLatticeˡ ≈ˡ-dec prog
open import Analysis.Forward.Evaluation isFiniteHeightLatticeˡ ≈ˡ-dec prog
open import Data.Empty using (⊥-elim)
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
open import Data.Product using (_,_)
open import Data.List using (_∷_; []; foldr; foldl)
open import Data.List.Relation.Unary.Any as Any using ()
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym; subst)
open import Relation.Nullary using (yes; no)
open import Function using (_∘_; flip)
open IsFiniteHeightLattice isFiniteHeightLatticeˡ
using ()
renaming
( isLattice to isLatticeˡ
; _≼_ to _≼ˡ_
)
open Program prog
-- Now, allow StmtEvaluators to be auto-constructed from ExprEvaluators.
module ExprToStmtAdapter {{ exprEvaluator : ExprEvaluator }} where
open ExprEvaluator exprEvaluator
using ()
renaming
( eval to evalᵉ
; eval-Monoʳ to evalᵉ-Monoʳ
)
-- For a particular evaluation function, we need to perform an evaluation
-- for an assignment, and update the corresponding key. Use Exercise 4.26's
-- generalized update to set the single key's value.
private module _ (k : String) (e : Expr) where
open VariableValuesFiniteMap.GeneralizedUpdate vars isLatticeᵛ (λ x x) (λ a₁≼a₂ a₁≼a₂) (λ _ evalᵉ e) (λ _ {vs₁} {vs₂} vs₁≼vs₂ evalᵉ-Monoʳ e {vs₁} {vs₂} vs₁≼vs₂) (k [])
using ()
renaming
( f' to updateVariablesFromExpression
; f'-Monotonic to updateVariablesFromExpression-Mono
; f'-k∈ks-≡ to updateVariablesFromExpression-k∈ks-≡
; f'-k∉ks-backward to updateVariablesFromExpression-k∉ks-backward
)
public
-- The per-state update function makes use of the single-key setter,
-- updateVariablesFromExpression, for the case where the statement
-- is an assignment.
--
-- This per-state function adjusts the variables in that state,
-- also monotonically; we derive the for-each-state update from
-- the Exercise 4.26 again.
evalᵇ : State BasicStmt VariableValues VariableValues
evalᵇ _ (k e) vs = updateVariablesFromExpression k e vs
evalᵇ _ noop vs = vs
evalᵇ-Monoʳ : (s : State) (bs : BasicStmt) Monotonic _≼ᵛ_ _≼ᵛ_ (evalᵇ s bs)
evalᵇ-Monoʳ _ (k e) {vs₁} {vs₂} vs₁≼vs₂ = updateVariablesFromExpression-Mono k e {vs₁} {vs₂} vs₁≼vs₂
evalᵇ-Monoʳ _ noop vs₁≼vs₂ = vs₁≼vs₂
instance
stmtEvaluator : StmtEvaluator
stmtEvaluator = record { eval = evalᵇ ; eval-Monoʳ = evalᵇ-Monoʳ }
-- Moreover, correct StmtEvaluators can be constructed from correct
-- ExprEvaluators.
module _ {{latticeInterpretationˡ : LatticeInterpretation isLatticeˡ}}
{{isValid : ValidExprEvaluator exprEvaluator latticeInterpretationˡ}} where
open ValidExprEvaluator isValid using () renaming (valid to validᵉ)
evalᵇ-valid : {s vs ρ₁ ρ₂ bs} ρ₁ , bs ⇒ᵇ ρ₂ vs ⟧ᵛ ρ₁ evalᵇ s bs vs ⟧ᵛ ρ₂
evalᵇ-valid {_} {vs} {ρ₁} {ρ₁} {_} (⇒ᵇ-noop ρ₁) ⟦vs⟧ρ = ⟦vs⟧ρ
evalᵇ-valid {_} {vs} {ρ₁} {_} {_} (⇒ᵇ-← ρ₁ k e v ρ,e⇒v) ⟦vs⟧ρ {k'} {l} k',l∈vs' {v'} k',v'∈ρ₂
with k ≟ˢ k' | k',v'∈ρ₂
... | yes refl | here _ v _
rewrite updateVariablesFromExpression-k∈ks-≡ k e {l = vs} (Any.here refl) k',l∈vs' =
validᵉ ρ,e⇒v ⟦vs⟧ρ
... | yes k≡k' | there _ _ _ _ _ k'≢k _ = ⊥-elim (k'≢k (sym k≡k'))
... | no k≢k' | here _ _ _ = ⊥-elim (k≢k' refl)
... | no k≢k' | there _ _ _ _ _ _ k',v'∈ρ₁ =
let
k'∉[k] = (λ { (Any.here refl) k≢k' refl })
k',l∈vs = updateVariablesFromExpression-k∉ks-backward k e {l = vs} k'∉[k] k',l∈vs'
in
⟦vs⟧ρ k',l∈vs k',v'∈ρ₁
instance
validStmtEvaluator : ValidStmtEvaluator stmtEvaluator latticeInterpretationˡ
validStmtEvaluator = record
{ valid = λ {a} {b} {c} {d} evalᵇ-valid {a} {b} {c} {d}
}

View File

@ -0,0 +1,66 @@
open import Language hiding (_[_])
open import Lattice
module Analysis.Forward.Evaluation
{L : Set} {h}
{_≈ˡ_ : L L Set} {_⊔ˡ_ : L L L} {_⊓ˡ_ : L L L}
(isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
(≈ˡ-dec : IsDecidable _≈ˡ_)
(prog : Program) where
open import Analysis.Forward.Lattices isFiniteHeightLatticeˡ ≈ˡ-dec prog
open import Data.Product using (_,_)
open IsFiniteHeightLattice isFiniteHeightLatticeˡ
using ()
renaming
( isLattice to isLatticeˡ
; _≼_ to _≼ˡ_
)
open Program prog
-- The "full" version of the analysis ought to define a function
-- that analyzes each basic statement. For some analyses, the state ID
-- is used as part of the lattice, so include it here.
record StmtEvaluator : Set where
field
eval : State BasicStmt VariableValues VariableValues
eval-Monoʳ : (s : State) (bs : BasicStmt) Monotonic _≼ᵛ_ _≼ᵛ_ (eval s bs)
-- For some "simpler" analyes, all we need to do is analyze the expressions.
-- For that purpose, provide a simpler evaluator type.
record ExprEvaluator : Set where
field
eval : Expr VariableValues L
eval-Monoʳ : (e : Expr) Monotonic _≼ᵛ_ _≼ˡ_ (eval e)
-- Evaluators have a notion of being "valid", in which the (symbolic)
-- manipulations on lattice elements they perform match up with
-- the semantics. Define what it means to be valid for statement and
-- expression-based evaluators. Define "IsValidExprEvaluator"
-- and "IsValidStmtEvaluator" standalone so that users can use them
-- in their type expressions.
module _ {{evaluator : ExprEvaluator}} {{interpretation : LatticeInterpretation isLatticeˡ}} where
open ExprEvaluator evaluator
open LatticeInterpretation interpretation
IsValidExprEvaluator : Set
IsValidExprEvaluator = {vs ρ e v} ρ , e ⇒ᵉ v vs ⟧ᵛ ρ eval e vs ⟧ˡ v
record ValidExprEvaluator (evaluator : ExprEvaluator)
(interpretation : LatticeInterpretation isLatticeˡ) : Set where
field
valid : IsValidExprEvaluator {{evaluator}} {{interpretation}}
module _ {{evaluator : StmtEvaluator}} {{interpretation : LatticeInterpretation isLatticeˡ}} where
open StmtEvaluator evaluator
open LatticeInterpretation interpretation
IsValidStmtEvaluator : Set
IsValidStmtEvaluator = {s vs ρ₁ ρ₂ bs} ρ₁ , bs ⇒ᵇ ρ₂ vs ⟧ᵛ ρ₁ eval s bs vs ⟧ᵛ ρ₂
record ValidStmtEvaluator (evaluator : StmtEvaluator)
(interpretation : LatticeInterpretation isLatticeˡ) : Set where
field
valid : IsValidStmtEvaluator {{evaluator}} {{interpretation}}

View File

@ -0,0 +1,211 @@
open import Language hiding (_[_])
open import Lattice
module Analysis.Forward.Lattices
{L : Set} {h}
{_≈ˡ_ : L L Set} {_⊔ˡ_ : L L L} {_⊓ˡ_ : L L L}
(isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
(≈ˡ-dec : IsDecidable _≈ˡ_)
(prog : Program) where
open import Data.String using () renaming (_≟_ to _≟ˢ_)
open import Data.Product using (proj₁; proj₂; _,_)
open import Data.Sum using (inj₁; inj₂)
open import Data.List using (List; _∷_; []; foldr)
open import Data.List.Membership.Propositional using () renaming (_∈_ to _∈ˡ_)
open import Data.List.Relation.Unary.Any as Any using ()
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Utils using (Pairwise; _⇒_; __)
open IsFiniteHeightLattice isFiniteHeightLatticeˡ
using ()
renaming
( isLattice to isLatticeˡ
; fixedHeight to fixedHeightˡ
; ≈-sym to ≈ˡ-sym
)
open Program prog
import Lattice.FiniteValueMap
import Chain
-- The variable -> abstract value (e.g. sign) map is a finite value-map
-- with keys strings. Use a bundle to avoid explicitly specifying operators.
-- It's helpful to export these via 'public' since consumers tend to
-- use various variable lattice operations.
module VariableValuesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟ˢ_ isLatticeˡ vars
open VariableValuesFiniteMap
using ()
renaming
( FiniteMap to VariableValues
; isLattice to isLatticeᵛ
; _≈_ to _≈ᵛ_
; _⊔_ to _⊔ᵛ_
; _≼_ to _≼ᵛ_
; ≈₂-dec⇒≈-dec to ≈ˡ-dec⇒≈ᵛ-dec
; _∈_ to _∈ᵛ_
; _∈k_ to _∈kᵛ_
; _updating_via_ to _updatingᵛ_via_
; locate to locateᵛ
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ
; ∈k-dec to ∈k-decᵛ
; all-equal-keys to all-equal-keysᵛ
)
public
open IsLattice isLatticeᵛ
using ()
renaming
( ⊔-Monotonicˡ to ⊔ᵛ-Monotonicˡ
; ⊔-Monotonicʳ to ⊔ᵛ-Monotonicʳ
; ⊔-idemp to ⊔ᵛ-idemp
)
public
open Lattice.FiniteValueMap.IterProdIsomorphism _≟ˢ_ isLatticeˡ
using ()
renaming
( Provenance-union to Provenance-unionᵐ
)
public
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟ˢ_ isLatticeˡ vars-Unique ≈ˡ-dec _ fixedHeightˡ
using ()
renaming
( isFiniteHeightLattice to isFiniteHeightLatticeᵛ
; ⊥-contains-bottoms to ⊥ᵛ-contains-bottoms
)
public
≈ᵛ-dec = ≈ˡ-dec⇒≈ᵛ-dec ≈ˡ-dec
joinSemilatticeᵛ = IsFiniteHeightLattice.joinSemilattice isFiniteHeightLatticeᵛ
fixedHeightᵛ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵛ
⊥ᵛ = Chain.Height.⊥ fixedHeightᵛ
-- Finally, the map we care about is (state -> (variables -> value)). Bring that in.
module StateVariablesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟_ isLatticeᵛ states
open StateVariablesFiniteMap
using (_[_]; []-∈; m₁≼m₂⇒m₁[ks]≼m₂[ks]; m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂)
renaming
( FiniteMap to StateVariables
; isLattice to isLatticeᵐ
; _≈_ to _≈ᵐ_
; _∈_ to _∈ᵐ_
; _∈k_ to _∈kᵐ_
; locate to locateᵐ
; _≼_ to _≼ᵐ_
; ≈₂-dec⇒≈-dec to ≈ᵛ-dec⇒≈ᵐ-dec
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ
)
public
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟_ isLatticeᵛ states-Unique ≈ᵛ-dec _ fixedHeightᵛ
using ()
renaming
( isFiniteHeightLattice to isFiniteHeightLatticeᵐ
)
public
open IsFiniteHeightLattice isFiniteHeightLatticeᵐ
using ()
renaming
( ≈-sym to ≈ᵐ-sym
)
public
≈ᵐ-dec = ≈ᵛ-dec⇒≈ᵐ-dec ≈ᵛ-dec
fixedHeightᵐ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵐ
-- We now have our (state -> (variables -> value)) map.
-- Define a couple of helpers to retrieve values from it. Specifically,
-- since the State type is as specific as possible, it's always possible to
-- retrieve the variable values at each state.
states-in-Map : (s : State) (sv : StateVariables) s ∈kᵐ sv
states-in-Map s sv@(m , ksv≡states) rewrite ksv≡states = states-complete s
variablesAt : State StateVariables VariableValues
variablesAt s sv = proj₁ (locateᵐ {s} {sv} (states-in-Map s sv))
variablesAt-∈ : (s : State) (sv : StateVariables) (s , variablesAt s sv) ∈ᵐ sv
variablesAt-∈ s sv = proj₂ (locateᵐ {s} {sv} (states-in-Map s sv))
variablesAt-≈ : s sv₁ sv₂ sv₁ ≈ᵐ sv₂ variablesAt s sv₁ ≈ᵛ variablesAt s sv₂
variablesAt-≈ s sv₁ sv₂ sv₁≈sv₂ =
m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ sv₁ sv₂ sv₁≈sv₂
(states-in-Map s sv₁) (states-in-Map s sv₂)
-- build up the 'join' function, which follows from Exercise 4.26's
--
-- L₁ → (A → L₂)
--
-- Construction, with L₁ = (A → L₂), and f = id
joinForKey : State StateVariables VariableValues
joinForKey k states = foldr _⊔ᵛ_ ⊥ᵛ (states [ incoming k ])
-- The per-key join is made up of map key accesses (which are monotonic)
-- and folds using the join operation (also monotonic)
joinForKey-Mono : (k : State) Monotonic _≼ᵐ_ _≼ᵛ_ (joinForKey k)
joinForKey-Mono k {fm₁} {fm₂} fm₁≼fm₂ =
foldr-Mono joinSemilatticeᵛ joinSemilatticeᵛ (fm₁ [ incoming k ]) (fm₂ [ incoming k ]) _⊔ᵛ_ ⊥ᵛ ⊥ᵛ
(m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ (incoming k) fm₁≼fm₂)
(⊔ᵛ-idemp ⊥ᵛ) ⊔ᵛ-Monotonicʳ ⊔ᵛ-Monotonicˡ
-- The name f' comes from the formulation of Exercise 4.26.
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x x) (λ a₁≼a₂ a₁≼a₂) joinForKey joinForKey-Mono states
using ()
renaming
( f' to joinAll
; f'-Monotonic to joinAll-Mono
; f'-k∈ks-≡ to joinAll-k∈ks-≡
)
public
variablesAt-joinAll : (s : State) (sv : StateVariables)
variablesAt s (joinAll sv) joinForKey s sv
variablesAt-joinAll s sv
with (vs , s,vs∈usv) locateᵐ {s} {joinAll sv} (states-in-Map s (joinAll sv)) =
joinAll-k∈ks-≡ {l = sv} (states-complete s) s,vs∈usv
-- Elements of the lattice type L describe individual variables. What
-- exactly each lattice element says about the variable is defined
-- by a LatticeInterpretation element. We've now constructed the
-- (Variable → L) lattice, which describes states, and we need to lift
-- the "meaning" of the element lattice to a descriptions of states.
module _ {{latticeInterpretationˡ : LatticeInterpretation isLatticeˡ}} where
open LatticeInterpretation latticeInterpretationˡ
using ()
renaming
( ⟦_⟧ to ⟦_⟧ˡ
; ⟦⟧-respects-≈ to ⟦⟧ˡ-respects-≈ˡ
; ⟦⟧-⊔- to ⟦⟧ˡ-⊔ˡ-
)
public
⟦_⟧ᵛ : VariableValues Env Set
⟦_⟧ᵛ vs ρ = {k l} (k , l) ∈ᵛ vs {v} (k , v) Language.∈ ρ l ⟧ˡ v
⟦⊥ᵛ⟧ᵛ∅ : ⊥ᵛ ⟧ᵛ []
⟦⊥ᵛ⟧ᵛ∅ _ ()
⟦⟧ᵛ-respects-≈ᵛ : {vs₁ vs₂ : VariableValues} vs₁ ≈ᵛ vs₂ vs₁ ⟧ᵛ vs₂ ⟧ᵛ
⟦⟧ᵛ-respects-≈ᵛ {m₁ , _} {m₂ , _}
(m₁⊆m₂ , m₂⊆m₁) ρ ⟦vs₁⟧ρ {k} {l} k,l∈m₂ {v} k,v∈ρ =
let
(l' , (l≈l' , k,l'∈m₁)) = m₂⊆m₁ _ _ k,l∈m₂
⟦l'⟧v = ⟦vs₁⟧ρ k,l'∈m₁ k,v∈ρ
in
⟦⟧ˡ-respects-≈ˡ (≈ˡ-sym l≈l') v ⟦l'⟧v
⟦⟧ᵛ-⊔ᵛ- : {vs₁ vs₂ : VariableValues} ( vs₁ ⟧ᵛ vs₂ ⟧ᵛ) vs₁ ⊔ᵛ vs₂ ⟧ᵛ
⟦⟧ᵛ-⊔ᵛ- {vs₁} {vs₂} ρ ⟦vs₁⟧ρ⟦vs₂⟧ρ {k} {l} k,l∈vs₁₂ {v} k,v∈ρ
with ((l₁ , l₂) , (refl , (k,l₁∈vs₁ , k,l₂∈vs₂)))
Provenance-unionᵐ vs₁ vs₂ k,l∈vs₁₂
with ⟦vs₁⟧ρ⟦vs₂⟧ρ
... | inj₁ ⟦vs₁⟧ρ = ⟦⟧ˡ-⊔ˡ- {l₁} {l₂} v (inj₁ (⟦vs₁⟧ρ k,l₁∈vs₁ k,v∈ρ))
... | inj₂ ⟦vs₂⟧ρ = ⟦⟧ˡ-⊔ˡ- {l₁} {l₂} v (inj₂ (⟦vs₂⟧ρ k,l₂∈vs₂ k,v∈ρ))
⟦⟧ᵛ-foldr : {vs : VariableValues} {vss : List VariableValues} {ρ : Env}
vs ⟧ᵛ ρ vs ∈ˡ vss foldr _⊔ᵛ_ ⊥ᵛ vss ⟧ᵛ ρ
⟦⟧ᵛ-foldr {vs} {vs vss'} {ρ = ρ} ⟦vs⟧ρ (Any.here refl) =
⟦⟧ᵛ-⊔ᵛ- {vs₁ = vs} {vs₂ = foldr _⊔ᵛ_ ⊥ᵛ vss'} ρ (inj₁ ⟦vs⟧ρ)
⟦⟧ᵛ-foldr {vs} {vs' vss'} {ρ = ρ} ⟦vs⟧ρ (Any.there vs∈vss') =
⟦⟧ᵛ-⊔ᵛ- {vs₁ = vs'} {vs₂ = foldr _⊔ᵛ_ ⊥ᵛ vss'} ρ
(inj₂ (⟦⟧ᵛ-foldr ⟦vs⟧ρ vs∈vss'))

View File

@ -62,7 +62,7 @@ open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = s
open AB.Plain 0ˢ using ()
renaming
( isLattice to isLatticeᵍ
; fixedHeight to fixedHeight
; isFiniteHeightLattice to isFiniteHeightLattice
; _≼_ to _≼ᵍ_
; _⊔_ to _⊔ᵍ_
; _⊓_ to _⊓ᵍ_
@ -171,8 +171,9 @@ instance
module WithProg (prog : Program) where
open Program prog
module ForwardWithProg = Analysis.Forward.WithProg (record { isLattice = isLatticeᵍ; fixedHeight = fixedHeightᵍ }) ≈ᵍ-dec prog
open ForwardWithProg hiding (analyze-correct)
open import Analysis.Forward.Lattices isFiniteHeightLatticeᵍ ≈ᵍ-dec prog
open import Analysis.Forward.Evaluation isFiniteHeightLatticeᵍ ≈ᵍ-dec prog
open import Analysis.Forward.Adapters isFiniteHeightLatticeᵍ ≈ᵍ-dec prog
eval : (e : Expr) VariableValues SignLattice
eval (e₁ + e₂) vs = plus (eval e₁ vs) (eval e₂ vs)
@ -184,8 +185,8 @@ module WithProg (prog : Program) where
eval (# 0) _ = [ 0ˢ ]ᵍ
eval (# (suc n')) _ = [ + ]ᵍ
eval-Mono : (e : Expr) Monotonic _≼ᵛ_ _≼ᵍ_ (eval e)
eval-Mono (e₁ + e₂) {vs₁} {vs₂} vs₁≼vs₂ =
eval-Monoʳ : (e : Expr) Monotonic _≼ᵛ_ _≼ᵍ_ (eval e)
eval-Monoʳ (e₁ + e₂) {vs₁} {vs₂} vs₁≼vs₂ =
let
-- TODO: can this be done with less boilerplate?
g₁vs₁ = eval e₁ vs₁
@ -195,9 +196,9 @@ module WithProg (prog : Program) where
in
≼ᵍ-trans
{plus g₁vs₁ g₂vs₁} {plus g₁vs₂ g₂vs₁} {plus g₁vs₂ g₂vs₂}
(plus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ {vs₁} {vs₂} vs₁≼vs₂))
(plus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ {vs₁} {vs₂} vs₁≼vs₂))
eval-Mono (e₁ - e₂) {vs₁} {vs₂} vs₁≼vs₂ =
(plus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Monoʳ e₁ {vs₁} {vs₂} vs₁≼vs₂))
(plus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Monoʳ e₂ {vs₁} {vs₂} vs₁≼vs₂))
eval-Monoʳ (e₁ - e₂) {vs₁} {vs₂} vs₁≼vs₂ =
let
-- TODO: here too -- can this be done with less boilerplate?
g₁vs₁ = eval e₁ vs₁
@ -207,9 +208,9 @@ module WithProg (prog : Program) where
in
≼ᵍ-trans
{minus g₁vs₁ g₂vs₁} {minus g₁vs₂ g₂vs₁} {minus g₁vs₂ g₂vs₂}
(minus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ {vs₁} {vs₂} vs₁≼vs₂))
(minus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ {vs₁} {vs₂} vs₁≼vs₂))
eval-Mono (` k) {vs₁@((kvs₁ , _) , _)} {vs₂@((kvs₂ , _), _)} vs₁≼vs₂
(minus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Monoʳ e₁ {vs₁} {vs₂} vs₁≼vs₂))
(minus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Monoʳ e₂ {vs₁} {vs₂} vs₁≼vs₂))
eval-Monoʳ (` k) {vs₁@((kvs₁ , _) , _)} {vs₂@((kvs₂ , _), _)} vs₁≼vs₂
with ∈k-decᵛ k kvs₁ | ∈k-decᵛ k kvs₂
... | yes k∈kvs₁ | yes k∈kvs₂ =
let
@ -220,15 +221,15 @@ module WithProg (prog : Program) where
... | yes k∈kvs₁ | no k∉kvs₂ = ⊥-elim (k∉kvs₂ (subst (λ l k ∈ˡ l) (all-equal-keysᵛ vs₁ vs₂) k∈kvs₁))
... | no k∉kvs₁ | yes k∈kvs₂ = ⊥-elim (k∉kvs₁ (subst (λ l k ∈ˡ l) (all-equal-keysᵛ vs₂ vs₁) k∈kvs₂))
... | no k∉kvs₁ | no k∉kvs₂ = IsLattice.≈-refl isLatticeᵍ
eval-Mono (# 0) _ = ≈ᵍ-refl
eval-Mono (# (suc n')) _ = ≈ᵍ-refl
eval-Monoʳ (# 0) _ = ≈ᵍ-refl
eval-Monoʳ (# (suc n')) _ = ≈ᵍ-refl
instance
SignEval : Evaluator
SignEval = record { eval = eval; eval-Mono = eval-Mono }
SignEval : ExprEvaluator
SignEval = record { eval = eval; eval-Monoʳ = eval-Monoʳ }
-- For debugging purposes, print out the result.
output = show result
output = show (Analysis.Forward.WithProg.result isFiniteHeightLatticeᵍ ≈ᵍ-dec prog)
-- This should have fewer cases -- the same number as the actual 'plus' above.
-- But agda only simplifies on first argument, apparently, so we are stuck
@ -280,7 +281,7 @@ module WithProg (prog : Program) where
minus-valid {[ 0ˢ ]ᵍ} {[ 0ˢ ]ᵍ} refl refl = refl
minus-valid {[ 0ˢ ]ᵍ} {⊤ᵍ} _ _ = tt
eval-valid : IsValid
eval-valid : IsValidExprEvaluator
eval-valid (⇒ᵉ-+ ρ e₁ e₂ z₁ z₂ ρ,e₁⇒z₁ ρ,e₂⇒z₂) ⟦vs⟧ρ =
plus-valid (eval-valid ρ,e₁⇒z₁ ⟦vs⟧ρ) (eval-valid ρ,e₂⇒z₂ ⟦vs⟧ρ)
eval-valid (⇒ᵉ-- ρ e₁ e₂ z₁ z₂ ρ,e₁⇒z₁ ρ,e₂⇒z₂) ⟦vs⟧ρ =
@ -292,4 +293,4 @@ module WithProg (prog : Program) where
eval-valid (⇒ᵉ- ρ 0) _ = refl
eval-valid (⇒ᵉ- ρ (suc n')) _ = (n' , refl)
analyze-correct = ForwardWithProg.analyze-correct
analyze-correct = Analysis.Forward.WithProg.analyze-correct