Danila Fedorin
c2c04e3ecd
To keep old (expression-based) analyses working, switch to using instance search and provide "adapters" that auto-construct statement analyzers from expression analyzers. Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
212 lines
9.1 KiB
Agda
212 lines
9.1 KiB
Agda
open import Language hiding (_[_])
|
||
open import Lattice
|
||
|
||
module Analysis.Forward.Lattices
|
||
{L : Set} {h}
|
||
{_≈ˡ_ : L → L → Set} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L}
|
||
(isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
|
||
(≈ˡ-dec : IsDecidable _≈ˡ_)
|
||
(prog : Program) where
|
||
|
||
open import Data.String using () renaming (_≟_ to _≟ˢ_)
|
||
open import Data.Product using (proj₁; proj₂; _,_)
|
||
open import Data.Sum using (inj₁; inj₂)
|
||
open import Data.List using (List; _∷_; []; foldr)
|
||
open import Data.List.Membership.Propositional using () renaming (_∈_ to _∈ˡ_)
|
||
open import Data.List.Relation.Unary.Any as Any using ()
|
||
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
|
||
open import Utils using (Pairwise; _⇒_; _∨_)
|
||
|
||
open IsFiniteHeightLattice isFiniteHeightLatticeˡ
|
||
using ()
|
||
renaming
|
||
( isLattice to isLatticeˡ
|
||
; fixedHeight to fixedHeightˡ
|
||
; ≈-sym to ≈ˡ-sym
|
||
)
|
||
open Program prog
|
||
|
||
import Lattice.FiniteValueMap
|
||
import Chain
|
||
|
||
-- The variable -> abstract value (e.g. sign) map is a finite value-map
|
||
-- with keys strings. Use a bundle to avoid explicitly specifying operators.
|
||
-- It's helpful to export these via 'public' since consumers tend to
|
||
-- use various variable lattice operations.
|
||
module VariableValuesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟ˢ_ isLatticeˡ vars
|
||
open VariableValuesFiniteMap
|
||
using ()
|
||
renaming
|
||
( FiniteMap to VariableValues
|
||
; isLattice to isLatticeᵛ
|
||
; _≈_ to _≈ᵛ_
|
||
; _⊔_ to _⊔ᵛ_
|
||
; _≼_ to _≼ᵛ_
|
||
; ≈₂-dec⇒≈-dec to ≈ˡ-dec⇒≈ᵛ-dec
|
||
; _∈_ to _∈ᵛ_
|
||
; _∈k_ to _∈kᵛ_
|
||
; _updating_via_ to _updatingᵛ_via_
|
||
; locate to locateᵛ
|
||
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ
|
||
; ∈k-dec to ∈k-decᵛ
|
||
; all-equal-keys to all-equal-keysᵛ
|
||
)
|
||
public
|
||
open IsLattice isLatticeᵛ
|
||
using ()
|
||
renaming
|
||
( ⊔-Monotonicˡ to ⊔ᵛ-Monotonicˡ
|
||
; ⊔-Monotonicʳ to ⊔ᵛ-Monotonicʳ
|
||
; ⊔-idemp to ⊔ᵛ-idemp
|
||
)
|
||
public
|
||
open Lattice.FiniteValueMap.IterProdIsomorphism _≟ˢ_ isLatticeˡ
|
||
using ()
|
||
renaming
|
||
( Provenance-union to Provenance-unionᵐ
|
||
)
|
||
public
|
||
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟ˢ_ isLatticeˡ vars-Unique ≈ˡ-dec _ fixedHeightˡ
|
||
using ()
|
||
renaming
|
||
( isFiniteHeightLattice to isFiniteHeightLatticeᵛ
|
||
; ⊥-contains-bottoms to ⊥ᵛ-contains-bottoms
|
||
)
|
||
public
|
||
|
||
≈ᵛ-dec = ≈ˡ-dec⇒≈ᵛ-dec ≈ˡ-dec
|
||
joinSemilatticeᵛ = IsFiniteHeightLattice.joinSemilattice isFiniteHeightLatticeᵛ
|
||
fixedHeightᵛ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵛ
|
||
⊥ᵛ = Chain.Height.⊥ fixedHeightᵛ
|
||
|
||
-- Finally, the map we care about is (state -> (variables -> value)). Bring that in.
|
||
module StateVariablesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟_ isLatticeᵛ states
|
||
open StateVariablesFiniteMap
|
||
using (_[_]; []-∈; m₁≼m₂⇒m₁[ks]≼m₂[ks]; m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂)
|
||
renaming
|
||
( FiniteMap to StateVariables
|
||
; isLattice to isLatticeᵐ
|
||
; _≈_ to _≈ᵐ_
|
||
; _∈_ to _∈ᵐ_
|
||
; _∈k_ to _∈kᵐ_
|
||
; locate to locateᵐ
|
||
; _≼_ to _≼ᵐ_
|
||
; ≈₂-dec⇒≈-dec to ≈ᵛ-dec⇒≈ᵐ-dec
|
||
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ
|
||
)
|
||
public
|
||
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟_ isLatticeᵛ states-Unique ≈ᵛ-dec _ fixedHeightᵛ
|
||
using ()
|
||
renaming
|
||
( isFiniteHeightLattice to isFiniteHeightLatticeᵐ
|
||
)
|
||
public
|
||
open IsFiniteHeightLattice isFiniteHeightLatticeᵐ
|
||
using ()
|
||
renaming
|
||
( ≈-sym to ≈ᵐ-sym
|
||
)
|
||
public
|
||
|
||
≈ᵐ-dec = ≈ᵛ-dec⇒≈ᵐ-dec ≈ᵛ-dec
|
||
fixedHeightᵐ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵐ
|
||
|
||
-- We now have our (state -> (variables -> value)) map.
|
||
-- Define a couple of helpers to retrieve values from it. Specifically,
|
||
-- since the State type is as specific as possible, it's always possible to
|
||
-- retrieve the variable values at each state.
|
||
|
||
states-in-Map : ∀ (s : State) (sv : StateVariables) → s ∈kᵐ sv
|
||
states-in-Map s sv@(m , ksv≡states) rewrite ksv≡states = states-complete s
|
||
|
||
variablesAt : State → StateVariables → VariableValues
|
||
variablesAt s sv = proj₁ (locateᵐ {s} {sv} (states-in-Map s sv))
|
||
|
||
variablesAt-∈ : ∀ (s : State) (sv : StateVariables) → (s , variablesAt s sv) ∈ᵐ sv
|
||
variablesAt-∈ s sv = proj₂ (locateᵐ {s} {sv} (states-in-Map s sv))
|
||
|
||
variablesAt-≈ : ∀ s sv₁ sv₂ → sv₁ ≈ᵐ sv₂ → variablesAt s sv₁ ≈ᵛ variablesAt s sv₂
|
||
variablesAt-≈ s sv₁ sv₂ sv₁≈sv₂ =
|
||
m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ sv₁ sv₂ sv₁≈sv₂
|
||
(states-in-Map s sv₁) (states-in-Map s sv₂)
|
||
|
||
-- build up the 'join' function, which follows from Exercise 4.26's
|
||
--
|
||
-- L₁ → (A → L₂)
|
||
--
|
||
-- Construction, with L₁ = (A → L₂), and f = id
|
||
|
||
joinForKey : State → StateVariables → VariableValues
|
||
joinForKey k states = foldr _⊔ᵛ_ ⊥ᵛ (states [ incoming k ])
|
||
|
||
-- The per-key join is made up of map key accesses (which are monotonic)
|
||
-- and folds using the join operation (also monotonic)
|
||
|
||
joinForKey-Mono : ∀ (k : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (joinForKey k)
|
||
joinForKey-Mono k {fm₁} {fm₂} fm₁≼fm₂ =
|
||
foldr-Mono joinSemilatticeᵛ joinSemilatticeᵛ (fm₁ [ incoming k ]) (fm₂ [ incoming k ]) _⊔ᵛ_ ⊥ᵛ ⊥ᵛ
|
||
(m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ (incoming k) fm₁≼fm₂)
|
||
(⊔ᵛ-idemp ⊥ᵛ) ⊔ᵛ-Monotonicʳ ⊔ᵛ-Monotonicˡ
|
||
|
||
-- The name f' comes from the formulation of Exercise 4.26.
|
||
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) joinForKey joinForKey-Mono states
|
||
using ()
|
||
renaming
|
||
( f' to joinAll
|
||
; f'-Monotonic to joinAll-Mono
|
||
; f'-k∈ks-≡ to joinAll-k∈ks-≡
|
||
)
|
||
public
|
||
|
||
variablesAt-joinAll : ∀ (s : State) (sv : StateVariables) →
|
||
variablesAt s (joinAll sv) ≡ joinForKey s sv
|
||
variablesAt-joinAll s sv
|
||
with (vs , s,vs∈usv) ← locateᵐ {s} {joinAll sv} (states-in-Map s (joinAll sv)) =
|
||
joinAll-k∈ks-≡ {l = sv} (states-complete s) s,vs∈usv
|
||
|
||
-- Elements of the lattice type L describe individual variables. What
|
||
-- exactly each lattice element says about the variable is defined
|
||
-- by a LatticeInterpretation element. We've now constructed the
|
||
-- (Variable → L) lattice, which describes states, and we need to lift
|
||
-- the "meaning" of the element lattice to a descriptions of states.
|
||
module _ {{latticeInterpretationˡ : LatticeInterpretation isLatticeˡ}} where
|
||
open LatticeInterpretation latticeInterpretationˡ
|
||
using ()
|
||
renaming
|
||
( ⟦_⟧ to ⟦_⟧ˡ
|
||
; ⟦⟧-respects-≈ to ⟦⟧ˡ-respects-≈ˡ
|
||
; ⟦⟧-⊔-∨ to ⟦⟧ˡ-⊔ˡ-∨
|
||
)
|
||
public
|
||
|
||
⟦_⟧ᵛ : VariableValues → Env → Set
|
||
⟦_⟧ᵛ vs ρ = ∀ {k l} → (k , l) ∈ᵛ vs → ∀ {v} → (k , v) Language.∈ ρ → ⟦ l ⟧ˡ v
|
||
|
||
⟦⊥ᵛ⟧ᵛ∅ : ⟦ ⊥ᵛ ⟧ᵛ []
|
||
⟦⊥ᵛ⟧ᵛ∅ _ ()
|
||
|
||
⟦⟧ᵛ-respects-≈ᵛ : ∀ {vs₁ vs₂ : VariableValues} → vs₁ ≈ᵛ vs₂ → ⟦ vs₁ ⟧ᵛ ⇒ ⟦ vs₂ ⟧ᵛ
|
||
⟦⟧ᵛ-respects-≈ᵛ {m₁ , _} {m₂ , _}
|
||
(m₁⊆m₂ , m₂⊆m₁) ρ ⟦vs₁⟧ρ {k} {l} k,l∈m₂ {v} k,v∈ρ =
|
||
let
|
||
(l' , (l≈l' , k,l'∈m₁)) = m₂⊆m₁ _ _ k,l∈m₂
|
||
⟦l'⟧v = ⟦vs₁⟧ρ k,l'∈m₁ k,v∈ρ
|
||
in
|
||
⟦⟧ˡ-respects-≈ˡ (≈ˡ-sym l≈l') v ⟦l'⟧v
|
||
|
||
⟦⟧ᵛ-⊔ᵛ-∨ : ∀ {vs₁ vs₂ : VariableValues} → (⟦ vs₁ ⟧ᵛ ∨ ⟦ vs₂ ⟧ᵛ) ⇒ ⟦ vs₁ ⊔ᵛ vs₂ ⟧ᵛ
|
||
⟦⟧ᵛ-⊔ᵛ-∨ {vs₁} {vs₂} ρ ⟦vs₁⟧ρ∨⟦vs₂⟧ρ {k} {l} k,l∈vs₁₂ {v} k,v∈ρ
|
||
with ((l₁ , l₂) , (refl , (k,l₁∈vs₁ , k,l₂∈vs₂)))
|
||
← Provenance-unionᵐ vs₁ vs₂ k,l∈vs₁₂
|
||
with ⟦vs₁⟧ρ∨⟦vs₂⟧ρ
|
||
... | inj₁ ⟦vs₁⟧ρ = ⟦⟧ˡ-⊔ˡ-∨ {l₁} {l₂} v (inj₁ (⟦vs₁⟧ρ k,l₁∈vs₁ k,v∈ρ))
|
||
... | inj₂ ⟦vs₂⟧ρ = ⟦⟧ˡ-⊔ˡ-∨ {l₁} {l₂} v (inj₂ (⟦vs₂⟧ρ k,l₂∈vs₂ k,v∈ρ))
|
||
|
||
⟦⟧ᵛ-foldr : ∀ {vs : VariableValues} {vss : List VariableValues} {ρ : Env} →
|
||
⟦ vs ⟧ᵛ ρ → vs ∈ˡ vss → ⟦ foldr _⊔ᵛ_ ⊥ᵛ vss ⟧ᵛ ρ
|
||
⟦⟧ᵛ-foldr {vs} {vs ∷ vss'} {ρ = ρ} ⟦vs⟧ρ (Any.here refl) =
|
||
⟦⟧ᵛ-⊔ᵛ-∨ {vs₁ = vs} {vs₂ = foldr _⊔ᵛ_ ⊥ᵛ vss'} ρ (inj₁ ⟦vs⟧ρ)
|
||
⟦⟧ᵛ-foldr {vs} {vs' ∷ vss'} {ρ = ρ} ⟦vs⟧ρ (Any.there vs∈vss') =
|
||
⟦⟧ᵛ-⊔ᵛ-∨ {vs₁ = vs'} {vs₂ = foldr _⊔ᵛ_ ⊥ᵛ vss'} ρ
|
||
(inj₂ (⟦⟧ᵛ-foldr ⟦vs⟧ρ vs∈vss'))
|