Add a lattice instance for Map
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
7b93654c4f
commit
c848f443e0
40
Lattice.agda
40
Lattice.agda
@ -42,7 +42,7 @@ record IsLattice {a} (A : Set a)
|
||||
absorb-⊓-⊔ : (x y : A) → (x ⊓ (x ⊔ y)) ≈ x
|
||||
|
||||
open IsSemilattice joinSemilattice public
|
||||
open IsSemilattice meetSemilattice public renaming
|
||||
open IsSemilattice meetSemilattice public hiding (≈-equiv; ≈-refl; ≈-sym; ≈-trans) renaming
|
||||
( ⊔-assoc to ⊓-assoc
|
||||
; ⊔-comm to ⊓-comm
|
||||
; ⊔-idemp to ⊓-idemp
|
||||
@ -350,3 +350,41 @@ module IsLatticeInstances where
|
||||
; absorb-⊔-⊓ = absorb-⊔-⊓
|
||||
; absorb-⊓-⊔ = absorb-⊓-⊔
|
||||
}
|
||||
|
||||
module ForMap {a} {A B : Set a}
|
||||
(≡-dec-A : Decidable (_≡_ {a} {A}))
|
||||
(_≈₂_ : B → B → Set a)
|
||||
(_⊔₂_ : B → B → B)
|
||||
(_⊓₂_ : B → B → B)
|
||||
(lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
|
||||
|
||||
open import Map A B ≡-dec-A
|
||||
open IsLattice lB renaming
|
||||
( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym
|
||||
; ⊔-idemp to ⊔₂-idemp; ⊓-idemp to ⊓₂-idemp
|
||||
; absorb-⊔-⊓ to absorb-⊔₂-⊓₂; absorb-⊓-⊔ to absorb-⊓₂-⊔₂
|
||||
)
|
||||
|
||||
private
|
||||
module MapJoin = IsSemilatticeInstances.ForMap ≡-dec-A _≈₂_ _⊔₂_ (IsLattice.joinSemilattice lB)
|
||||
module MapMeet = IsSemilatticeInstances.ForMap ≡-dec-A _≈₂_ _⊓₂_ (IsLattice.meetSemilattice lB)
|
||||
|
||||
infix 4 _≈_
|
||||
infixl 20 _⊔_
|
||||
|
||||
_≈_ : Map → Map → Set a
|
||||
_≈_ = lift (_≈₂_)
|
||||
|
||||
_⊔_ : Map → Map → Map
|
||||
m₁ ⊔ m₂ = union _⊔₂_ m₁ m₂
|
||||
|
||||
_⊓_ : Map → Map → Map
|
||||
m₁ ⊓ m₂ = intersect _⊓₂_ m₁ m₂
|
||||
|
||||
MapIsLattice : IsLattice Map _≈_ _⊔_ _⊓_
|
||||
MapIsLattice = record
|
||||
{ joinSemilattice = MapJoin.MapIsUnionSemilattice
|
||||
; meetSemilattice = MapMeet.MapIsIntersectSemilattice
|
||||
; absorb-⊔-⊓ = union-intersect-absorb _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ _⊓₂_ ⊔₂-idemp ⊓₂-idemp absorb-⊔₂-⊓₂ absorb-⊓₂-⊔₂
|
||||
; absorb-⊓-⊔ = intersect-union-absorb _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ _⊓₂_ ⊔₂-idemp ⊓₂-idemp absorb-⊔₂-⊓₂ absorb-⊓₂-⊔₂
|
||||
}
|
||||
|
12
Map.agda
12
Map.agda
@ -682,8 +682,8 @@ module _ (_≈_ : B → B → Set b) where
|
||||
(_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B)
|
||||
(⊔₂-idemp : ∀ (b : B) → (b ⊔₂ b) ≈ b)
|
||||
(⊓₂-idemp : ∀ (b : B) → (b ⊓₂ b) ≈ b)
|
||||
(⊔₂-⊓₂-absorb : ∀ {b₁ b₂ : B} → (b₁ ⊔₂ (b₁ ⊓₂ b₂)) ≈ b₁)
|
||||
(⊓₂-⊔₂-absorb : ∀ {b₁ b₂ : B} → (b₁ ⊓₂ (b₁ ⊔₂ b₂)) ≈ b₁)
|
||||
(⊔₂-⊓₂-absorb : ∀ (b₁ b₂ : B) → (b₁ ⊔₂ (b₁ ⊓₂ b₂)) ≈ b₁)
|
||||
(⊓₂-⊔₂-absorb : ∀ (b₁ b₂ : B) → (b₁ ⊓₂ (b₁ ⊔₂ b₂)) ≈ b₁)
|
||||
where
|
||||
private module I⊔ = ImplInsert _⊔₂_
|
||||
private module I⊓ = ImplInsert _⊓₂_
|
||||
@ -703,7 +703,7 @@ module _ (_≈_ : B → B → Set b) where
|
||||
(single {v₂} v₂∈m₂)) , v₁v₁'v₂∈m₁m₁₂))
|
||||
rewrite Map-functional {m = m₁} k,v₁∈m₁ k,v₁'∈m₁
|
||||
rewrite Map-functional {m = m₁ ⊓ (m₁ ⊔ m₂)} k,v∈m₁m₁₂ v₁v₁'v₂∈m₁m₁₂ =
|
||||
(v₁' , (⊓₂-⊔₂-absorb , k,v₁'∈m₁))
|
||||
(v₁' , (⊓₂-⊔₂-absorb v₁' v₂ , k,v₁'∈m₁))
|
||||
... | (_ , (bothⁱ (single {v₁} k,v₁∈m₁)
|
||||
(in₁ (single {v₁'} k,v₁'∈m₁) _) , v₁v₁'∈m₁m₁₂))
|
||||
rewrite Map-functional {m = m₁} k,v₁∈m₁ k,v₁'∈m₁
|
||||
@ -717,7 +717,7 @@ module _ (_≈_ : B → B → Set b) where
|
||||
with ∈k-dec k l₂
|
||||
... | yes k∈km₂ =
|
||||
let (v₂ , k,v₂∈m₂) = locate k∈km₂
|
||||
in (v ⊓₂ (v ⊔₂ v₂) , (≈-sym ⊓₂-⊔₂-absorb , I⊓.intersect-combines u₁ (I⊔.union-preserves-Unique l₁ l₂ u₂) k,v∈m₁ (I⊔.union-combines u₁ u₂ k,v∈m₁ k,v₂∈m₂)))
|
||||
in (v ⊓₂ (v ⊔₂ v₂) , (≈-sym (⊓₂-⊔₂-absorb v v₂) , I⊓.intersect-combines u₁ (I⊔.union-preserves-Unique l₁ l₂ u₂) k,v∈m₁ (I⊔.union-combines u₁ u₂ k,v∈m₁ k,v₂∈m₂)))
|
||||
... | no k∉km₂ = (v ⊓₂ v , (≈-sym (⊓₂-idemp v) , I⊓.intersect-combines u₁ (I⊔.union-preserves-Unique l₁ l₂ u₂) k,v∈m₁ (I⊔.union-preserves-∈₁ u₁ k,v∈m₁ k∉km₂)))
|
||||
|
||||
union-intersect-absorb : ∀ (m₁ m₂ : Map) → lift (m₁ ⊔ (m₁ ⊓ m₂)) m₁
|
||||
@ -731,7 +731,7 @@ module _ (_≈_ : B → B → Set b) where
|
||||
(single {v₂} k,v₂∈m₂)) , v₁v₁'v₂∈m₁m₁₂))
|
||||
rewrite Map-functional {m = m₁} k,v₁∈m₁ k,v₁'∈m₁
|
||||
rewrite Map-functional {m = m₁ ⊔ (m₁ ⊓ m₂)} k,v∈m₁m₁₂ v₁v₁'v₂∈m₁m₁₂ =
|
||||
(v₁' , (⊔₂-⊓₂-absorb , k,v₁'∈m₁))
|
||||
(v₁' , (⊔₂-⊓₂-absorb v₁' v₂ , k,v₁'∈m₁))
|
||||
... | (_ , (in₁ (single {v₁} k,v₁∈m₁) k∉km₁₂ , k,v₁∈m₁m₁₂))
|
||||
rewrite Map-functional {m = m₁ ⊔ (m₁ ⊓ m₂)} k,v∈m₁m₁₂ k,v₁∈m₁m₁₂ =
|
||||
(v₁ , (≈-refl , k,v₁∈m₁))
|
||||
@ -744,5 +744,5 @@ module _ (_≈_ : B → B → Set b) where
|
||||
with ∈k-dec k l₂
|
||||
... | yes k∈km₂ =
|
||||
let (v₂ , k,v₂∈m₂) = locate k∈km₂
|
||||
in (v ⊔₂ (v ⊓₂ v₂) , (≈-sym ⊔₂-⊓₂-absorb , I⊔.union-combines u₁ (I⊓.intersect-preserves-Unique {l₁} {l₂} u₂) k,v∈m₁ (I⊓.intersect-combines u₁ u₂ k,v∈m₁ k,v₂∈m₂)))
|
||||
in (v ⊔₂ (v ⊓₂ v₂) , (≈-sym (⊔₂-⊓₂-absorb v v₂) , I⊔.union-combines u₁ (I⊓.intersect-preserves-Unique {l₁} {l₂} u₂) k,v∈m₁ (I⊓.intersect-combines u₁ u₂ k,v∈m₁ k,v₂∈m₂)))
|
||||
... | no k∉km₂ = (v , (≈-refl , I⊔.union-preserves-∈₁ u₁ k,v∈m₁ (I⊓.intersect-preserves-∉₂ {k} {l₁} {l₂} k∉km₂)))
|
||||
|
Loading…
Reference in New Issue
Block a user