Start formalizing monotonic function predicates
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
71cb97ad8c
commit
ce3fa182fe
|
@ -209,9 +209,16 @@ module Graphs where
|
||||||
rewrite cast-is-id refl (Graph.nodes g₂)
|
rewrite cast-is-id refl (Graph.nodes g₂)
|
||||||
with refl ← nsg₂≡nsg₁++newNodes = sym (lookup-++ˡ (Graph.nodes g₁) _ _)
|
with refl ← nsg₂≡nsg₁++newNodes = sym (lookup-++ˡ (Graph.nodes g₁) _ _)
|
||||||
|
|
||||||
|
-- Tools for graph construction. The most important is a 'monotonic function':
|
||||||
|
-- one that takes a graph, and produces another graph, such that the
|
||||||
|
-- new graph includes all the information from the old one.
|
||||||
|
|
||||||
MonotonicGraphFunction : (Graph → Set) → Set
|
MonotonicGraphFunction : (Graph → Set) → Set
|
||||||
MonotonicGraphFunction T = (g₁ : Graph) → Σ Graph (λ g₂ → T g₂ × g₁ ⊆ g₂)
|
MonotonicGraphFunction T = (g₁ : Graph) → Σ Graph (λ g₂ → T g₂ × g₁ ⊆ g₂)
|
||||||
|
|
||||||
|
-- Now, define some operations on monotonic functions; these are useful
|
||||||
|
-- to save the work of threading intermediate graphs in and out of operations.
|
||||||
|
|
||||||
infixr 2 _⟨⊗⟩_
|
infixr 2 _⟨⊗⟩_
|
||||||
_⟨⊗⟩_ : ∀ {T₁ T₂ : Graph → Set} {{ T₁Relaxable : Relaxable T₁ }} →
|
_⟨⊗⟩_ : ∀ {T₁ T₂ : Graph → Set} {{ T₁Relaxable : Relaxable T₁ }} →
|
||||||
MonotonicGraphFunction T₁ → MonotonicGraphFunction T₂ →
|
MonotonicGraphFunction T₁ → MonotonicGraphFunction T₂ →
|
||||||
|
@ -236,6 +243,43 @@ module Graphs where
|
||||||
MonotonicGraphFunction T₂
|
MonotonicGraphFunction T₂
|
||||||
_map_ f fn g = let (g' , (t₁ , g⊆g')) = f g in (g' , (fn g' t₁ , g⊆g'))
|
_map_ f fn g = let (g' , (t₁ , g⊆g')) = f g in (g' , (fn g' t₁ , g⊆g'))
|
||||||
|
|
||||||
|
|
||||||
|
-- To reason about monotonic functions and what we do, we need a way
|
||||||
|
-- to describe values they produce. A 'graph-value predicate' is
|
||||||
|
-- just a predicate for some (dependent) value.
|
||||||
|
|
||||||
|
GraphValuePredicate : (Graph → Set) → Set₁
|
||||||
|
GraphValuePredicate T = ∀ (g : Graph) → T g → Set
|
||||||
|
|
||||||
|
Both : {T₁ T₂ : Graph → Set} → GraphValuePredicate T₁ → GraphValuePredicate T₂ →
|
||||||
|
GraphValuePredicate (T₁ ⊗ T₂)
|
||||||
|
Both P Q = (λ { g (t₁ , t₂) → (P g t₁ × Q g t₂) })
|
||||||
|
|
||||||
|
-- Since monotnic functions keep adding on to a function, proofs of
|
||||||
|
-- graph-value predicates go stale fast (they describe old values of
|
||||||
|
-- the graph). To keep propagating them through, we need them to still
|
||||||
|
-- on 'bigger graphs'. We call such predicates monotonic as well, since
|
||||||
|
-- they respect the ordering of graphs.
|
||||||
|
|
||||||
|
MonotonicPredicate : ∀ {T : Graph → Set} {{ TRelaxable : Relaxable T }} →
|
||||||
|
GraphValuePredicate T → Set
|
||||||
|
MonotonicPredicate {T} P = ∀ (g₁ g₂ : Graph) (t₁ : T g₁) (g₁⊆g₂ : g₁ ⊆ g₂) →
|
||||||
|
P g₁ t₁ → P g₂ (relax g₁⊆g₂ t₁)
|
||||||
|
|
||||||
|
|
||||||
|
-- A 'map' has a certain property if its ouputs satisfy that property
|
||||||
|
-- for all inputs.
|
||||||
|
|
||||||
|
always : ∀ {T : Graph → Set} → GraphValuePredicate T → MonotonicGraphFunction T → Set
|
||||||
|
always P m = ∀ g₁ → let (g₂ , t , _) = m g₁ in P g₂ t
|
||||||
|
|
||||||
|
⟨⊗⟩-reason : ∀ {T₁ T₂ : Graph → Set} {{ T₁Relaxable : Relaxable T₁ }}
|
||||||
|
{P : GraphValuePredicate T₁} {Q : GraphValuePredicate T₂}
|
||||||
|
{P-Mono : MonotonicPredicate P}
|
||||||
|
{m₁ : MonotonicGraphFunction T₁} {m₂ : MonotonicGraphFunction T₂} →
|
||||||
|
always P m₁ → always Q m₂ → always (Both P Q) (m₁ ⟨⊗⟩ m₂)
|
||||||
|
⟨⊗⟩-reason = {!!}
|
||||||
|
|
||||||
module Construction where
|
module Construction where
|
||||||
pushBasicBlock : List BasicStmt → MonotonicGraphFunction Graph.Index
|
pushBasicBlock : List BasicStmt → MonotonicGraphFunction Graph.Index
|
||||||
pushBasicBlock bss g =
|
pushBasicBlock bss g =
|
||||||
|
|
Loading…
Reference in New Issue
Block a user