Make auxillary definitions private

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2024-02-25 14:06:45 -08:00
parent b96bac5518
commit d280f5afdf

View File

@ -31,25 +31,26 @@ module TransportFiniteHeight
open import Chain _≈₁_ ≈₁-equiv _≺₁_ ≺₁-cong using () renaming (Chain to Chain₁; done to done₁; step to step₁) open import Chain _≈₁_ ≈₁-equiv _≺₁_ ≺₁-cong using () renaming (Chain to Chain₁; done to done₁; step to step₁)
open import Chain _≈₂_ ≈₂-equiv _≺₂_ ≺₂-cong using () renaming (Chain to Chain₂; done to done₂; step to step₂) open import Chain _≈₂_ ≈₂-equiv _≺₂_ ≺₂-cong using () renaming (Chain to Chain₂; done to done₂; step to step₂)
f-Injective : Injective _≈₁_ _≈₂_ f private
f-Injective {x} {y} fx≈fy = ≈₁-trans (≈₁-sym (inverseʳ x)) (≈₁-trans (g-preserves-≈₂ fx≈fy) (inverseʳ y)) f-Injective : Injective _≈₁_ _≈₂_ f
f-Injective {x} {y} fx≈fy = ≈₁-trans (≈₁-sym (inverseʳ x)) (≈₁-trans (g-preserves-≈₂ fx≈fy) (inverseʳ y))
g-Injective : Injective _≈₂_ _≈₁_ g g-Injective : Injective _≈₂_ _≈₁_ g
g-Injective {x} {y} gx≈gy = ≈₂-trans (≈₂-sym (inverseˡ x)) (≈₂-trans (f-preserves-≈₁ gx≈gy) (inverseˡ y)) g-Injective {x} {y} gx≈gy = ≈₂-trans (≈₂-sym (inverseˡ x)) (≈₂-trans (f-preserves-≈₁ gx≈gy) (inverseˡ y))
f-preserves-̷≈ : f Preserves (λ x y ¬ x ≈₁ y) (λ x y ¬ x ≈₂ y) f-preserves-̷≈ : f Preserves (λ x y ¬ x ≈₁ y) (λ x y ¬ x ≈₂ y)
f-preserves-̷≈ x̷≈y = λ fx≈fy x̷≈y (f-Injective fx≈fy) f-preserves-̷≈ x̷≈y = λ fx≈fy x̷≈y (f-Injective fx≈fy)
g-preserves-̷≈ : g Preserves (λ x y ¬ x ≈₂ y) (λ x y ¬ x ≈₁ y) g-preserves-̷≈ : g Preserves (λ x y ¬ x ≈₂ y) (λ x y ¬ x ≈₁ y)
g-preserves-̷≈ x̷≈y = λ gx≈gy x̷≈y (g-Injective gx≈gy) g-preserves-̷≈ x̷≈y = λ gx≈gy x̷≈y (g-Injective gx≈gy)
portChain₁ : {a₁ a₂ : A} {h : } Chain₁ a₁ a₂ h Chain₂ (f a₁) (f a₂) h portChain₁ : {a₁ a₂ : A} {h : } Chain₁ a₁ a₂ h Chain₂ (f a₁) (f a₂) h
portChain₁ (done₁ a₁≈a₂) = done₂ (f-preserves-≈₁ a₁≈a₂) portChain₁ (done₁ a₁≈a₂) = done₂ (f-preserves-≈₁ a₁≈a₂)
portChain₁ (step₁ {a₁} {a₂} (a₁≼a₂ , a₁̷≈a₂) a₂≈a₂' c) = step₂ (≈₂-trans (≈₂-sym (f-⊔-distr a₁ a₂)) (f-preserves-≈₁ a₁≼a₂) , f-preserves-̷≈ a₁̷≈a₂) (f-preserves-≈₁ a₂≈a₂') (portChain₁ c) portChain₁ (step₁ {a₁} {a₂} (a₁≼a₂ , a₁̷≈a₂) a₂≈a₂' c) = step₂ (≈₂-trans (≈₂-sym (f-⊔-distr a₁ a₂)) (f-preserves-≈₁ a₁≼a₂) , f-preserves-̷≈ a₁̷≈a₂) (f-preserves-≈₁ a₂≈a₂') (portChain₁ c)
portChain₂ : {b₁ b₂ : B} {h : } Chain₂ b₁ b₂ h Chain₁ (g b₁) (g b₂) h portChain₂ : {b₁ b₂ : B} {h : } Chain₂ b₁ b₂ h Chain₁ (g b₁) (g b₂) h
portChain₂ (done₂ a₂≈a₁) = done₁ (g-preserves-≈₂ a₂≈a₁) portChain₂ (done₂ a₂≈a₁) = done₁ (g-preserves-≈₂ a₂≈a₁)
portChain₂ (step₂ {b₁} {b₂} (b₁≼b₂ , b₁̷≈b₂) b₂≈b₂' c) = step₁ (≈₁-trans (≈₁-sym (g-⊔-distr b₁ b₂)) (g-preserves-≈₂ b₁≼b₂) , g-preserves-̷≈ b₁̷≈b₂) (g-preserves-≈₂ b₂≈b₂') (portChain₂ c) portChain₂ (step₂ {b₁} {b₂} (b₁≼b₂ , b₁̷≈b₂) b₂≈b₂' c) = step₁ (≈₁-trans (≈₁-sym (g-⊔-distr b₁ b₂)) (g-preserves-≈₂ b₁≼b₂) , g-preserves-̷≈ b₁̷≈b₂) (g-preserves-≈₂ b₂≈b₂') (portChain₂ c)
isFiniteHeightLattice : IsFiniteHeightLattice B height _≈₂_ _⊔₂_ _⊓₂_ isFiniteHeightLattice : IsFiniteHeightLattice B height _≈₂_ _⊔₂_ _⊓₂_
isFiniteHeightLattice = isFiniteHeightLattice =