Make auxillary definitions private
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
b96bac5518
commit
d280f5afdf
|
@ -31,25 +31,26 @@ module TransportFiniteHeight
|
||||||
open import Chain _≈₁_ ≈₁-equiv _≺₁_ ≺₁-cong using () renaming (Chain to Chain₁; done to done₁; step to step₁)
|
open import Chain _≈₁_ ≈₁-equiv _≺₁_ ≺₁-cong using () renaming (Chain to Chain₁; done to done₁; step to step₁)
|
||||||
open import Chain _≈₂_ ≈₂-equiv _≺₂_ ≺₂-cong using () renaming (Chain to Chain₂; done to done₂; step to step₂)
|
open import Chain _≈₂_ ≈₂-equiv _≺₂_ ≺₂-cong using () renaming (Chain to Chain₂; done to done₂; step to step₂)
|
||||||
|
|
||||||
f-Injective : Injective _≈₁_ _≈₂_ f
|
private
|
||||||
f-Injective {x} {y} fx≈fy = ≈₁-trans (≈₁-sym (inverseʳ x)) (≈₁-trans (g-preserves-≈₂ fx≈fy) (inverseʳ y))
|
f-Injective : Injective _≈₁_ _≈₂_ f
|
||||||
|
f-Injective {x} {y} fx≈fy = ≈₁-trans (≈₁-sym (inverseʳ x)) (≈₁-trans (g-preserves-≈₂ fx≈fy) (inverseʳ y))
|
||||||
|
|
||||||
g-Injective : Injective _≈₂_ _≈₁_ g
|
g-Injective : Injective _≈₂_ _≈₁_ g
|
||||||
g-Injective {x} {y} gx≈gy = ≈₂-trans (≈₂-sym (inverseˡ x)) (≈₂-trans (f-preserves-≈₁ gx≈gy) (inverseˡ y))
|
g-Injective {x} {y} gx≈gy = ≈₂-trans (≈₂-sym (inverseˡ x)) (≈₂-trans (f-preserves-≈₁ gx≈gy) (inverseˡ y))
|
||||||
|
|
||||||
f-preserves-̷≈ : f Preserves (λ x y → ¬ x ≈₁ y) ⟶ (λ x y → ¬ x ≈₂ y)
|
f-preserves-̷≈ : f Preserves (λ x y → ¬ x ≈₁ y) ⟶ (λ x y → ¬ x ≈₂ y)
|
||||||
f-preserves-̷≈ x̷≈y = λ fx≈fy → x̷≈y (f-Injective fx≈fy)
|
f-preserves-̷≈ x̷≈y = λ fx≈fy → x̷≈y (f-Injective fx≈fy)
|
||||||
|
|
||||||
g-preserves-̷≈ : g Preserves (λ x y → ¬ x ≈₂ y) ⟶ (λ x y → ¬ x ≈₁ y)
|
g-preserves-̷≈ : g Preserves (λ x y → ¬ x ≈₂ y) ⟶ (λ x y → ¬ x ≈₁ y)
|
||||||
g-preserves-̷≈ x̷≈y = λ gx≈gy → x̷≈y (g-Injective gx≈gy)
|
g-preserves-̷≈ x̷≈y = λ gx≈gy → x̷≈y (g-Injective gx≈gy)
|
||||||
|
|
||||||
portChain₁ : ∀ {a₁ a₂ : A} {h : ℕ} → Chain₁ a₁ a₂ h → Chain₂ (f a₁) (f a₂) h
|
portChain₁ : ∀ {a₁ a₂ : A} {h : ℕ} → Chain₁ a₁ a₂ h → Chain₂ (f a₁) (f a₂) h
|
||||||
portChain₁ (done₁ a₁≈a₂) = done₂ (f-preserves-≈₁ a₁≈a₂)
|
portChain₁ (done₁ a₁≈a₂) = done₂ (f-preserves-≈₁ a₁≈a₂)
|
||||||
portChain₁ (step₁ {a₁} {a₂} (a₁≼a₂ , a₁̷≈a₂) a₂≈a₂' c) = step₂ (≈₂-trans (≈₂-sym (f-⊔-distr a₁ a₂)) (f-preserves-≈₁ a₁≼a₂) , f-preserves-̷≈ a₁̷≈a₂) (f-preserves-≈₁ a₂≈a₂') (portChain₁ c)
|
portChain₁ (step₁ {a₁} {a₂} (a₁≼a₂ , a₁̷≈a₂) a₂≈a₂' c) = step₂ (≈₂-trans (≈₂-sym (f-⊔-distr a₁ a₂)) (f-preserves-≈₁ a₁≼a₂) , f-preserves-̷≈ a₁̷≈a₂) (f-preserves-≈₁ a₂≈a₂') (portChain₁ c)
|
||||||
|
|
||||||
portChain₂ : ∀ {b₁ b₂ : B} {h : ℕ} → Chain₂ b₁ b₂ h → Chain₁ (g b₁) (g b₂) h
|
portChain₂ : ∀ {b₁ b₂ : B} {h : ℕ} → Chain₂ b₁ b₂ h → Chain₁ (g b₁) (g b₂) h
|
||||||
portChain₂ (done₂ a₂≈a₁) = done₁ (g-preserves-≈₂ a₂≈a₁)
|
portChain₂ (done₂ a₂≈a₁) = done₁ (g-preserves-≈₂ a₂≈a₁)
|
||||||
portChain₂ (step₂ {b₁} {b₂} (b₁≼b₂ , b₁̷≈b₂) b₂≈b₂' c) = step₁ (≈₁-trans (≈₁-sym (g-⊔-distr b₁ b₂)) (g-preserves-≈₂ b₁≼b₂) , g-preserves-̷≈ b₁̷≈b₂) (g-preserves-≈₂ b₂≈b₂') (portChain₂ c)
|
portChain₂ (step₂ {b₁} {b₂} (b₁≼b₂ , b₁̷≈b₂) b₂≈b₂' c) = step₁ (≈₁-trans (≈₁-sym (g-⊔-distr b₁ b₂)) (g-preserves-≈₂ b₁≼b₂) , g-preserves-̷≈ b₁̷≈b₂) (g-preserves-≈₂ b₂≈b₂') (portChain₂ c)
|
||||||
|
|
||||||
isFiniteHeightLattice : IsFiniteHeightLattice B height _≈₂_ _⊔₂_ _⊓₂_
|
isFiniteHeightLattice : IsFiniteHeightLattice B height _≈₂_ _⊔₂_ _⊓₂_
|
||||||
isFiniteHeightLattice =
|
isFiniteHeightLattice =
|
||||||
|
|
Loading…
Reference in New Issue
Block a user