Add instances for decidability and finite height lattices

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2023-08-20 18:35:57 -07:00
parent 99cc5af243
commit e62f429b86

View File

@ -3,12 +3,12 @@ module Lattice where
import Data.Nat.Properties as NatProps
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym)
open import Relation.Binary.Definitions
open import Relation.Nullary using (Dec; ¬_)
open import Data.Nat as Nat using (; _≤_)
open import Data.Product using (_×_; _,_)
open import Data.Product using (_×_; Σ; _,_)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Agda.Primitive using (lsuc; Level)
open import NatMap using (NatMap)
open import Chain using (Chain; Height)
record IsEquivalence {a} (A : Set a) (_≈_ : A A Set a) : Set a where
field
@ -16,6 +16,10 @@ record IsEquivalence {a} (A : Set a) (_≈_ : A → A → Set a) : Set a where
≈-sym : {a b : A} a b b a
≈-trans : {a b c : A} a b b c a c
record IsDecidable {a} (A : Set a) (R : A A Set a) : Set a where
field
R-dec : (a₁ a₂ : A) Dec (R a₁ a₂)
record IsSemilattice {a} (A : Set a)
(_≈_ : A A Set a)
(_⊔_ : A A A) : Set a where
@ -48,6 +52,24 @@ record IsLattice {a} (A : Set a)
; ⊔-idemp to ⊓-idemp
)
record IsFiniteHeightLattice {a} (A : Set a)
(h : )
(_≈_ : A A Set a)
(_⊔_ : A A A)
(_⊓_ : A A A) : Set (lsuc a) where
_≼_ : A A Set a
a b = Σ A (λ c (a c) b)
_≺_ : A A Set a
a b = (a b) × (¬ a b)
field
isLattice : IsLattice A _≈_ _⊔_ _⊓_
fixedHeight : Height _≺_ h
open IsLattice isLattice public
record Semilattice {a} (A : Set a) : Set (lsuc a) where
field
_≈_ : A A Set a