More tweaks to naming and style
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
26db4cc86c
commit
eaee73236f
40
Map.agda
40
Map.agda
|
@ -23,7 +23,7 @@ keys = map proj₁
|
||||||
|
|
||||||
data Unique {c} {C : Set c} : List C → Set c where
|
data Unique {c} {C : Set c} : List C → Set c where
|
||||||
empty : Unique []
|
empty : Unique []
|
||||||
push : forall {x : C} {xs : List C}
|
push : ∀ {x : C} {xs : List C}
|
||||||
→ All (λ x' → ¬ x ≡ x') xs
|
→ All (λ x' → ¬ x ≡ x') xs
|
||||||
→ Unique xs
|
→ Unique xs
|
||||||
→ Unique (x ∷ xs)
|
→ Unique (x ∷ xs)
|
||||||
|
@ -169,18 +169,18 @@ private module ImplInsert (f : B → B → B) where
|
||||||
let (v , k,v∈l) = locate k∈kl
|
let (v , k,v∈l) = locate k∈kl
|
||||||
in ∈-cong proj₁ (insert-preserves-∈ k≢k' k,v∈l)
|
in ∈-cong proj₁ (insert-preserves-∈ k≢k' k,v∈l)
|
||||||
|
|
||||||
insert-preserves-∉ : ∀ {k k' : A} {v' : B} {l : List (A × B)} →
|
insert-preserves-∉k : ∀ {k k' : A} {v' : B} {l : List (A × B)} →
|
||||||
¬ k ≡ k' → ¬ k ∈k l → ¬ k ∈k insert k' v' l
|
¬ k ≡ k' → ¬ k ∈k l → ¬ k ∈k insert k' v' l
|
||||||
insert-preserves-∉ {l = []} k≢k' k∉kl (here k≡k') = k≢k' k≡k'
|
insert-preserves-∉k {l = []} k≢k' k∉kl (here k≡k') = k≢k' k≡k'
|
||||||
insert-preserves-∉ {l = []} k≢k' k∉kl (there ())
|
insert-preserves-∉k {l = []} k≢k' k∉kl (there ())
|
||||||
insert-preserves-∉ {k} {k'} {v'} {(k'' , v'') ∷ xs} k≢k' k∉kl k∈kil
|
insert-preserves-∉k {k} {k'} {v'} {(k'' , v'') ∷ xs} k≢k' k∉kl k∈kil
|
||||||
with ≡-dec-A k k''
|
with ≡-dec-A k k''
|
||||||
... | yes k≡k'' = k∉kl (here k≡k'')
|
... | yes k≡k'' = k∉kl (here k≡k'')
|
||||||
... | no k≢k'' with ≡-dec-A k' k'' | k∈kil
|
... | no k≢k'' with ≡-dec-A k' k'' | k∈kil
|
||||||
... | yes k'≡k'' | here k≡k'' = k≢k'' k≡k''
|
... | yes k'≡k'' | here k≡k'' = k≢k'' k≡k''
|
||||||
... | yes k'≡k'' | there k∈kxs = k∉kl (there k∈kxs)
|
... | yes k'≡k'' | there k∈kxs = k∉kl (there k∈kxs)
|
||||||
... | no k'≢k'' | here k≡k'' = k∉kl (here k≡k'')
|
... | no k'≢k'' | here k≡k'' = k∉kl (here k≡k'')
|
||||||
... | no k'≢k'' | there k∈kxs = insert-preserves-∉ k≢k'
|
... | no k'≢k'' | there k∈kxs = insert-preserves-∉k k≢k'
|
||||||
(λ k∈kxs → k∉kl (there k∈kxs)) k∈kxs
|
(λ k∈kxs → k∉kl (there k∈kxs)) k∈kxs
|
||||||
|
|
||||||
merge-preserves-∉ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
merge-preserves-∉ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||||||
|
@ -189,13 +189,13 @@ private module ImplInsert (f : B → B → B) where
|
||||||
merge-preserves-∉ {k} {(k' , v') ∷ xs₁} k∉kl₁ k∉kl₂
|
merge-preserves-∉ {k} {(k' , v') ∷ xs₁} k∉kl₁ k∉kl₂
|
||||||
with ≡-dec-A k k'
|
with ≡-dec-A k k'
|
||||||
... | yes k≡k' = absurd (k∉kl₁ (here k≡k'))
|
... | yes k≡k' = absurd (k∉kl₁ (here k≡k'))
|
||||||
... | no k≢k' = insert-preserves-∉ k≢k' (merge-preserves-∉ (λ k∈kxs₁ → k∉kl₁ (there k∈kxs₁)) k∉kl₂)
|
... | no k≢k' = insert-preserves-∉k k≢k' (merge-preserves-∉ (λ k∈kxs₁ → k∉kl₁ (there k∈kxs₁)) k∉kl₂)
|
||||||
|
|
||||||
merge-preserves-keys₁ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} →
|
merge-preserves-∈₁ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} →
|
||||||
¬ k ∈k l₁ → (k , v) ∈ l₂ → (k , v) ∈ merge l₁ l₂
|
¬ k ∈k l₁ → (k , v) ∈ l₂ → (k , v) ∈ merge l₁ l₂
|
||||||
merge-preserves-keys₁ {l₁ = []} _ k,v∈l₂ = k,v∈l₂
|
merge-preserves-∈₁ {l₁ = []} _ k,v∈l₂ = k,v∈l₂
|
||||||
merge-preserves-keys₁ {l₁ = (k' , v') ∷ xs₁} k∉kl₁ k,v∈l₂ =
|
merge-preserves-∈₁ {l₁ = (k' , v') ∷ xs₁} k∉kl₁ k,v∈l₂ =
|
||||||
let recursion = merge-preserves-keys₁ (λ k∈xs₁ → k∉kl₁ (there k∈xs₁)) k,v∈l₂
|
let recursion = merge-preserves-∈₁ (λ k∈xs₁ → k∉kl₁ (there k∈xs₁)) k,v∈l₂
|
||||||
in insert-preserves-∈ (λ k≡k' → k∉kl₁ (here k≡k')) recursion
|
in insert-preserves-∈ (λ k≡k' → k∉kl₁ (here k≡k')) recursion
|
||||||
|
|
||||||
insert-fresh : ∀ {k : A} {v : B} {l : List (A × B)} →
|
insert-fresh : ∀ {k : A} {v : B} {l : List (A × B)} →
|
||||||
|
@ -206,18 +206,18 @@ private module ImplInsert (f : B → B → B) where
|
||||||
... | yes k≡k' = absurd (k∉kl (here k≡k'))
|
... | yes k≡k' = absurd (k∉kl (here k≡k'))
|
||||||
... | no _ = there (insert-fresh (λ k∈kxs → k∉kl (there k∈kxs)))
|
... | no _ = there (insert-fresh (λ k∈kxs → k∉kl (there k∈kxs)))
|
||||||
|
|
||||||
merge-preserves-keys₂ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} →
|
merge-preserves-∈₂ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} →
|
||||||
Unique (keys l₁) → (k , v) ∈ l₁ → ¬ k ∈k l₂ → (k , v) ∈ merge l₁ l₂
|
Unique (keys l₁) → (k , v) ∈ l₁ → ¬ k ∈k l₂ → (k , v) ∈ merge l₁ l₂
|
||||||
merge-preserves-keys₂ {k} {v} {(k' , v') ∷ xs₁} (push k'≢xs₁ uxs₁) (there k,v∈xs₁) k∉kl₂ =
|
merge-preserves-∈₂ {k} {v} {(k' , v') ∷ xs₁} (push k'≢xs₁ uxs₁) (there k,v∈xs₁) k∉kl₂ =
|
||||||
insert-preserves-∈ k≢k' k,v∈mxs₁l
|
insert-preserves-∈ k≢k' k,v∈mxs₁l
|
||||||
where
|
where
|
||||||
k,v∈mxs₁l = merge-preserves-keys₂ uxs₁ k,v∈xs₁ k∉kl₂
|
k,v∈mxs₁l = merge-preserves-∈₂ uxs₁ k,v∈xs₁ k∉kl₂
|
||||||
|
|
||||||
k≢k' : ¬ k ≡ k'
|
k≢k' : ¬ k ≡ k'
|
||||||
k≢k' with ≡-dec-A k k'
|
k≢k' with ≡-dec-A k k'
|
||||||
... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs₁ (∈-cong proj₁ k,v∈xs₁))
|
... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs₁ (∈-cong proj₁ k,v∈xs₁))
|
||||||
... | no k≢k' = k≢k'
|
... | no k≢k' = k≢k'
|
||||||
merge-preserves-keys₂ {l₁ = (k' , v') ∷ xs₁} (push k'≢xs₁ uxs₁) (here k,v≡k',v') k∉kl₂
|
merge-preserves-∈₂ {l₁ = (k' , v') ∷ xs₁} (push k'≢xs₁ uxs₁) (here k,v≡k',v') k∉kl₂
|
||||||
rewrite cong proj₁ k,v≡k',v' rewrite cong proj₂ k,v≡k',v' =
|
rewrite cong proj₁ k,v≡k',v' rewrite cong proj₂ k,v≡k',v' =
|
||||||
insert-fresh (merge-preserves-∉ (All¬-¬Any k'≢xs₁) k∉kl₂)
|
insert-fresh (merge-preserves-∉ (All¬-¬Any k'≢xs₁) k∉kl₂)
|
||||||
|
|
||||||
|
@ -233,12 +233,12 @@ private module ImplInsert (f : B → B → B) where
|
||||||
... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs (∈-cong proj₁ k,v'∈xs))
|
... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs (∈-cong proj₁ k,v'∈xs))
|
||||||
... | no k≢k' = there (insert-combines uxs k,v'∈xs)
|
... | no k≢k' = there (insert-combines uxs k,v'∈xs)
|
||||||
|
|
||||||
merge-combines : forall {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)} →
|
merge-combines : ∀ {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)} →
|
||||||
Unique (keys l₁) → Unique (keys l₂) →
|
Unique (keys l₁) → Unique (keys l₂) →
|
||||||
(k , v₁) ∈ l₁ → (k , v₂) ∈ l₂ → (k , f v₁ v₂) ∈ merge l₁ l₂
|
(k , v₁) ∈ l₁ → (k , v₂) ∈ l₂ → (k , f v₁ v₂) ∈ merge l₁ l₂
|
||||||
merge-combines {l₁ = (k' , v) ∷ xs₁} {l₂} (push k'≢xs₁ uxs₁) ul₂ (here k,v₁≡k',v) k,v₂∈l₂
|
merge-combines {l₁ = (k' , v) ∷ xs₁} {l₂} (push k'≢xs₁ uxs₁) ul₂ (here k,v₁≡k',v) k,v₂∈l₂
|
||||||
rewrite cong proj₁ (sym (k,v₁≡k',v)) rewrite cong proj₂ (sym (k,v₁≡k',v)) =
|
rewrite cong proj₁ (sym (k,v₁≡k',v)) rewrite cong proj₂ (sym (k,v₁≡k',v)) =
|
||||||
insert-combines (merge-preserves-Unique xs₁ l₂ ul₂) (merge-preserves-keys₁ (All¬-¬Any k'≢xs₁) k,v₂∈l₂)
|
insert-combines (merge-preserves-Unique xs₁ l₂ ul₂) (merge-preserves-∈₁ (All¬-¬Any k'≢xs₁) k,v₂∈l₂)
|
||||||
merge-combines {k} {l₁ = (k' , v) ∷ xs₁} (push k'≢xs₁ uxs₁) ul₂ (there k,v₁∈xs₁) k,v₂∈l₂ =
|
merge-combines {k} {l₁ = (k' , v) ∷ xs₁} (push k'≢xs₁ uxs₁) ul₂ (there k,v₁∈xs₁) k,v₂∈l₂ =
|
||||||
insert-preserves-∈ k≢k' (merge-combines uxs₁ ul₂ k,v₁∈xs₁ k,v₂∈l₂)
|
insert-preserves-∈ k≢k' (merge-combines uxs₁ ul₂ k,v₁∈xs₁ k,v₂∈l₂)
|
||||||
where
|
where
|
||||||
|
@ -295,12 +295,12 @@ module _ (f : B → B → B) where
|
||||||
let
|
let
|
||||||
(v₁ , k,v₁∈l₁) = locate k∈kl₁
|
(v₁ , k,v₁∈l₁) = locate k∈kl₁
|
||||||
in
|
in
|
||||||
(in₁ v₁ k,v₁∈l₁ k∉kl₂ , merge-preserves-keys₂ u₁ k,v₁∈l₁ k∉kl₂)
|
(in₁ v₁ k,v₁∈l₁ k∉kl₂ , merge-preserves-∈₂ u₁ k,v₁∈l₁ k∉kl₂)
|
||||||
... | no k∉kl₁ | yes k∈kl₂ =
|
... | no k∉kl₁ | yes k∈kl₂ =
|
||||||
let
|
let
|
||||||
(v₂ , k,v₂∈l₂) = locate k∈kl₂
|
(v₂ , k,v₂∈l₂) = locate k∈kl₂
|
||||||
in
|
in
|
||||||
(in₂ v₂ k∉kl₁ k,v₂∈l₂ , merge-preserves-keys₁ k∉kl₁ k,v₂∈l₂)
|
(in₂ v₂ k∉kl₁ k,v₂∈l₂ , merge-preserves-∈₁ k∉kl₁ k,v₂∈l₂)
|
||||||
... | no k∉kl₁ | no k∉kl₂ = absurd (merge-preserves-∉ k∉kl₁ k∉kl₂ k∈km₁m₂)
|
... | no k∉kl₁ | no k∉kl₂ = absurd (merge-preserves-∉ k∉kl₁ k∉kl₂ k∈km₁m₂)
|
||||||
|
|
||||||
module _ (_≈_ : B → B → Set b) where
|
module _ (_≈_ : B → B → Set b) where
|
||||||
|
@ -314,7 +314,7 @@ module _ (_≈_ : B → B → Set b) where
|
||||||
|
|
||||||
module _ (f : B → B → B) where
|
module _ (f : B → B → B) where
|
||||||
module _ (f-comm : ∀ (b₁ b₂ : B) → f b₁ b₂ ≡ f b₂ b₁) where
|
module _ (f-comm : ∀ (b₁ b₂ : B) → f b₁ b₂ ≡ f b₂ b₁) where
|
||||||
merge-comm : forall (m₁ m₂ : Map) → lift (_≡_) (merge f m₁ m₂) (merge f m₂ m₁)
|
merge-comm : ∀ (m₁ m₂ : Map) → lift (_≡_) (merge f m₁ m₂) (merge f m₂ m₁)
|
||||||
merge-comm m₁ m₂ = (merge-comm-subset m₁ m₂ , merge-comm-subset m₂ m₁)
|
merge-comm m₁ m₂ = (merge-comm-subset m₁ m₂ , merge-comm-subset m₂ m₁)
|
||||||
where
|
where
|
||||||
merge-comm-subset : ∀ (m₁ m₂ : Map) → subset (_≡_) (merge f m₁ m₂) (merge f m₂ m₁)
|
merge-comm-subset : ∀ (m₁ m₂ : Map) → subset (_≡_) (merge f m₁ m₂) (merge f m₂ m₁)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user