Delete code that won't be used for this approach
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
@@ -105,144 +105,3 @@ buildCfg ⟨ bs₁ ⟩ = singleton (bs₁ ∷ [])
|
||||
buildCfg (s₁ then s₂) = buildCfg s₁ ↦ buildCfg s₂
|
||||
buildCfg (if _ then s₁ else s₂) = singleton [] ↦ (buildCfg s₁ ∙ buildCfg s₂) ↦ singleton []
|
||||
buildCfg (while _ repeat s) = loop (buildCfg s ↦ singleton [])
|
||||
|
||||
-- record _⊆_ (g₁ g₂ : Graph) : Set where
|
||||
-- constructor Mk-⊆
|
||||
-- field
|
||||
-- n : ℕ
|
||||
-- sg₂≡sg₁+n : Graph.size g₂ ≡ Graph.size g₁ Nat.+ n
|
||||
-- newNodes : Vec (List BasicStmt) n
|
||||
-- nsg₂≡nsg₁++newNodes : cast sg₂≡sg₁+n (Graph.nodes g₂) ≡ Graph.nodes g₁ ++ newNodes
|
||||
-- e∈g₁⇒e∈g₂ : ∀ {e : Graph.Edge g₁} →
|
||||
-- e ListMem.∈ (Graph.edges g₁) →
|
||||
-- (↑ˡ-Edge e n) ListMem.∈ (subst (λ m → List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
|
||||
--
|
||||
-- private
|
||||
-- castᵉ : ∀ {n m : ℕ} .(p : n ≡ m) → (Fin n × Fin n) → (Fin m × Fin m)
|
||||
-- castᵉ p (idx₁ , idx₂) = (Fin.cast p idx₁ , Fin.cast p idx₂)
|
||||
--
|
||||
-- ↑ˡ-assoc : ∀ {s n₁ n₂} (f : Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) ≡ s Nat.+ n₁ Nat.+ n₂) →
|
||||
-- f ↑ˡ n₁ ↑ˡ n₂ ≡ Fin.cast p (f ↑ˡ (n₁ Nat.+ n₂))
|
||||
-- ↑ˡ-assoc zero p = refl
|
||||
-- ↑ˡ-assoc {suc s'} {n₁} {n₂} (suc f') p rewrite ↑ˡ-assoc f' (sym (+-assoc s' n₁ n₂)) = refl
|
||||
--
|
||||
-- ↑ˡ-Edge-assoc : ∀ {s n₁ n₂} (e : Fin s × Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) ≡ s Nat.+ n₁ Nat.+ n₂) →
|
||||
-- ↑ˡ-Edge (↑ˡ-Edge e n₁) n₂ ≡ castᵉ p (↑ˡ-Edge e (n₁ Nat.+ n₂))
|
||||
-- ↑ˡ-Edge-assoc (idx₁ , idx₂) p
|
||||
-- rewrite ↑ˡ-assoc idx₁ p
|
||||
-- rewrite ↑ˡ-assoc idx₂ p = refl
|
||||
--
|
||||
-- ↑ˡ-identityʳ : ∀ {s} (f : Fin s) (p : s Nat.+ 0 ≡ s) →
|
||||
-- f ≡ Fin.cast p (f ↑ˡ 0)
|
||||
-- ↑ˡ-identityʳ zero p = refl
|
||||
-- ↑ˡ-identityʳ {suc s'} (suc f') p rewrite sym (↑ˡ-identityʳ f' (+-comm s' 0)) = refl
|
||||
--
|
||||
-- ↑ˡ-Edge-identityʳ : ∀ {s} (e : Fin s × Fin s) (p : s Nat.+ 0 ≡ s) →
|
||||
-- e ≡ castᵉ p (↑ˡ-Edge e 0)
|
||||
-- ↑ˡ-Edge-identityʳ (idx₁ , idx₂) p
|
||||
-- rewrite sym (↑ˡ-identityʳ idx₁ p)
|
||||
-- rewrite sym (↑ˡ-identityʳ idx₂ p) = refl
|
||||
--
|
||||
-- cast∈⇒∈subst : ∀ {n m : ℕ} (p : n ≡ m) (q : m ≡ n)
|
||||
-- (e : Fin n × Fin n) (es : List (Fin m × Fin m)) →
|
||||
-- castᵉ p e ListMem.∈ es →
|
||||
-- e ListMem.∈ subst (λ m → List (Fin m × Fin m)) q es
|
||||
-- cast∈⇒∈subst refl refl (idx₁ , idx₂) es e∈es
|
||||
-- rewrite FinProp.cast-is-id refl idx₁
|
||||
-- rewrite FinProp.cast-is-id refl idx₂ = e∈es
|
||||
--
|
||||
-- ⊆-trans : ∀ {g₁ g₂ g₃ : Graph} → g₁ ⊆ g₂ → g₂ ⊆ g₃ → g₁ ⊆ g₃
|
||||
-- ⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃}
|
||||
-- (Mk-⊆ n₁ p₁@refl newNodes₁ nsg₂≡nsg₁++newNodes₁ e∈g₁⇒e∈g₂)
|
||||
-- (Mk-⊆ n₂ p₂@refl newNodes₂ nsg₃≡nsg₂++newNodes₂ e∈g₂⇒e∈g₃)
|
||||
-- rewrite cast-is-id refl ns₂
|
||||
-- rewrite cast-is-id refl ns₃
|
||||
-- with refl ← nsg₂≡nsg₁++newNodes₁
|
||||
-- with refl ← nsg₃≡nsg₂++newNodes₂ =
|
||||
-- record
|
||||
-- { n = n₁ Nat.+ n₂
|
||||
-- ; sg₂≡sg₁+n = +-assoc s₁ n₁ n₂
|
||||
-- ; newNodes = newNodes₁ ++ newNodes₂
|
||||
-- ; nsg₂≡nsg₁++newNodes = ++-assoc (+-assoc s₁ n₁ n₂) ns₁ newNodes₁ newNodes₂
|
||||
-- ; e∈g₁⇒e∈g₂ = λ {e} e∈g₁ →
|
||||
-- cast∈⇒∈subst (sym (+-assoc s₁ n₁ n₂)) (+-assoc s₁ n₁ n₂) _ _
|
||||
-- (subst (λ e' → e' ListMem.∈ es₃)
|
||||
-- (↑ˡ-Edge-assoc e (sym (+-assoc s₁ n₁ n₂)))
|
||||
-- (e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁)))
|
||||
-- }
|
||||
--
|
||||
-- open import MonotonicState _⊆_ ⊆-trans renaming (MonotonicState to MonotonicGraphFunction)
|
||||
--
|
||||
-- instance
|
||||
-- IndexRelaxable : Relaxable Graph.Index
|
||||
-- IndexRelaxable = record
|
||||
-- { relax = λ { (Mk-⊆ n refl _ _ _) idx → idx ↑ˡ n }
|
||||
-- }
|
||||
--
|
||||
-- EdgeRelaxable : Relaxable Graph.Edge
|
||||
-- EdgeRelaxable = record
|
||||
-- { relax = λ g₁⊆g₂ (idx₁ , idx₂) →
|
||||
-- ( Relaxable.relax IndexRelaxable g₁⊆g₂ idx₁
|
||||
-- , Relaxable.relax IndexRelaxable g₁⊆g₂ idx₂
|
||||
-- )
|
||||
-- }
|
||||
--
|
||||
-- open Relaxable {{...}}
|
||||
--
|
||||
-- pushBasicBlock : List BasicStmt → MonotonicGraphFunction Graph.Index
|
||||
-- pushBasicBlock bss g =
|
||||
-- ( record
|
||||
-- { size = Graph.size g Nat.+ 1
|
||||
-- ; nodes = Graph.nodes g ++ (bss ∷ [])
|
||||
-- ; edges = List.map (λ e → ↑ˡ-Edge e 1) (Graph.edges g)
|
||||
-- }
|
||||
-- , ( Graph.size g ↑ʳ zero
|
||||
-- , record
|
||||
-- { n = 1
|
||||
-- ; sg₂≡sg₁+n = refl
|
||||
-- ; newNodes = (bss ∷ [])
|
||||
-- ; nsg₂≡nsg₁++newNodes = cast-is-id refl _
|
||||
-- ; e∈g₁⇒e∈g₂ = λ e∈g₁ → x∈xs⇒fx∈fxs (λ e → ↑ˡ-Edge e 1) e∈g₁
|
||||
-- }
|
||||
-- )
|
||||
-- )
|
||||
--
|
||||
-- pushEmptyBlock : MonotonicGraphFunction Graph.Index
|
||||
-- pushEmptyBlock = pushBasicBlock []
|
||||
--
|
||||
-- addEdges : ∀ (g : Graph) → List (Graph.Edge g) → Σ Graph (λ g' → g ⊆ g')
|
||||
-- addEdges (MkGraph s ns es) es' =
|
||||
-- ( record
|
||||
-- { size = s
|
||||
-- ; nodes = ns
|
||||
-- ; edges = es' List.++ es
|
||||
-- }
|
||||
-- , record
|
||||
-- { n = 0
|
||||
-- ; sg₂≡sg₁+n = +-comm 0 s
|
||||
-- ; newNodes = []
|
||||
-- ; nsg₂≡nsg₁++newNodes = cast-sym _ (++-identityʳ (+-comm s 0) ns)
|
||||
-- ; e∈g₁⇒e∈g₂ = λ {e} e∈es →
|
||||
-- cast∈⇒∈subst (+-comm s 0) (+-comm 0 s) _ _
|
||||
-- (subst (λ e' → e' ListMem.∈ _)
|
||||
-- (↑ˡ-Edge-identityʳ e (+-comm s 0))
|
||||
-- (ListMemProp.∈-++⁺ʳ es' e∈es))
|
||||
-- }
|
||||
-- )
|
||||
--
|
||||
-- buildCfg : Stmt → MonotonicGraphFunction (Graph.Index ⊗ Graph.Index)
|
||||
-- buildCfg ⟨ bs₁ ⟩ = pushBasicBlock (bs₁ ∷ []) map (λ g idx → (idx , idx))
|
||||
-- buildCfg (s₁ then s₂) =
|
||||
-- (buildCfg s₁ ⟨⊗⟩ buildCfg s₂)
|
||||
-- update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → addEdges g ((idx₂ , idx₃) ∷ []) })
|
||||
-- map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → (idx₁ , idx₄) })
|
||||
-- buildCfg (if _ then s₁ else s₂) =
|
||||
-- (buildCfg s₁ ⟨⊗⟩ buildCfg s₂ ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
|
||||
-- update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') →
|
||||
-- addEdges g ((idx , idx₁) ∷ (idx , idx₃) ∷ (idx₂ , idx') ∷ (idx₄ , idx') ∷ []) })
|
||||
-- map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') → (idx , idx') })
|
||||
-- buildCfg (while _ repeat s) =
|
||||
-- (buildCfg s ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
|
||||
-- update (λ { g ((idx₁ , idx₂) , idx , idx') →
|
||||
-- addEdges g ((idx , idx') ∷ (idx , idx₁) ∷ (idx₂ , idx) ∷ []) })
|
||||
-- map (λ { g ((idx₁ , idx₂) , idx , idx') → (idx , idx') })
|
||||
|
||||
Reference in New Issue
Block a user