Use 'data' instead of aliases to prove reasoning properties

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2024-04-20 19:31:13 -07:00
parent 855bf3f56c
commit f3e0d5f2e3
1 changed files with 64 additions and 28 deletions

View File

@ -83,13 +83,15 @@ _map_ f fn s = let (s' , (t₁ , s≼s')) = f s in (s' , (fn s' t₁ , s≼s'))
DependentPredicate : (S → Set s) → Set (lsuc s)
DependentPredicate T = ∀ (s₁ : S) → T s₁ → Set s
Both : {T₁ T₂ : S → Set s} → DependentPredicate T₁ → DependentPredicate T₂ →
DependentPredicate (T₁ ⊗ T₂)
Both P Q = (λ { s (t₁ , t₂) → (P s t₁ × Q s t₂) })
data Both {T₁ T₂ : S → Set s}
(P : DependentPredicate T₁)
(Q : DependentPredicate T₂) : DependentPredicate (T₁ ⊗ T₂) where
MkBoth : ∀ {s : S} {t₁ : T₁ s} {t₂ : T₂ s} → P s t₁ → Q s t₂ → Both P Q s (t₁ , t₂)
And : {T : S → Set s} → DependentPredicate T → DependentPredicate T →
DependentPredicate T
And P Q = (λ { s t → (P s t × Q s t) })
data And {T : S → Set s}
(P : DependentPredicate T)
(Q : DependentPredicate T) : DependentPredicate T where
MkAnd : ∀ {s : S} {t : T s} → P s t → Q s t → And P Q s t
-- Since monotnic functions keep adding on to the state, proofs of
-- predicates over their outputs go stale fast (they describe old values of
@ -101,48 +103,82 @@ record MonotonicPredicate {T : S → Set s} {{ r : Relaxable T }} (P : Dependent
field relaxPredicate : ∀ (s₁ s₂ : S) (t₁ : T s₁) (s₁≼s₂ : s₁ ≼ s₂) →
P s₁ t₁ → P s₂ (Relaxable.relax r s₁≼s₂ t₁)
instance
BothMonotonic : ∀ {T₁ : S → Set s} {T₂ : S → Set s}
{{ _ : Relaxable T₁ }} {{ _ : Relaxable T₂ }}
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
{{_ : MonotonicPredicate P}} {{_ : MonotonicPredicate Q}} →
MonotonicPredicate (Both P Q)
BothMonotonic {{_}} {{_}} {{P-Mono}} {{Q-Mono}} = record
{ relaxPredicate = (λ { s₁ s₂ (t₁ , t₂) s₁≼s₂ (MkBoth p q) →
MkBoth (MonotonicPredicate.relaxPredicate P-Mono s₁ s₂ t₁ s₁≼s₂ p)
(MonotonicPredicate.relaxPredicate Q-Mono s₁ s₂ t₂ s₁≼s₂ q)})
}
AndMonotonic : ∀ {T : S → Set s} {{ _ : Relaxable T }}
{P : DependentPredicate T} {Q : DependentPredicate T}
{{_ : MonotonicPredicate P}} {{_ : MonotonicPredicate Q}} →
MonotonicPredicate (And P Q)
AndMonotonic {{_}} {{P-Mono}} {{Q-Mono}} = record
{ relaxPredicate = (λ { s₁ s₂ t s₁≼s₂ (MkAnd p q) →
MkAnd (MonotonicPredicate.relaxPredicate P-Mono s₁ s₂ t s₁≼s₂ p)
(MonotonicPredicate.relaxPredicate Q-Mono s₁ s₂ t s₁≼s₂ q)})
}
-- A MonotonicState "monad" m has a certain property if its ouputs satisfy that
-- property for all inputs.
always : ∀ {T : S → Set s} → DependentPredicate T → MonotonicState T → Set s
always P m = ∀ s₁ → let (s₂ , t , _) = m s₁ in P s₂ t
data Always {T : S → Set s} (P : DependentPredicate T) (m : MonotonicState T) : Set s where
MkAlways : (∀ s₁ → let (s₂ , t , _) = m s₁ in P s₂ t) → Always P m
infixr 4 _⟨⊗⟩-reason_
_⟨⊗⟩-reason_ : ∀ {T₁ T₂ : S → Set s} {{ _ : Relaxable T₁ }}
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
{{P-Mono : MonotonicPredicate P}}
{m₁ : MonotonicState T₁} {m₂ : MonotonicState T₂} →
always P m₁ → always Q m₂ → always (Both P Q) (m₁ ⟨⊗⟩ m₂)
_⟨⊗⟩-reason_ {{P-Mono = P-Mono}} {m₁ = m₁} {m₂ = m₂} aP aQ s
with p ← aP s
with (s' , (t₁ , s≼s')) ← m₁ s
with q ← aQ s'
with (s'' , (t₂ , s'≼s'')) ← m₂ s' =
(MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p , q)
Always P m₁ → Always Q m₂ → Always (Both P Q) (m₁ ⟨⊗⟩ m₂)
_⟨⊗⟩-reason_ {P = P} {Q = Q} {{P-Mono = P-Mono}} {m₁ = m₁} {m₂ = m₂} (MkAlways aP) (MkAlways aQ) =
MkAlways impl
where
impl : ∀ s₁ → let (s₂ , t , _) = (m₁ ⟨⊗⟩ m₂) s₁ in (Both P Q) s₂ t
impl s
with p ← aP s
with (s' , (t₁ , s≼s')) ← m₁ s
with q ← aQ s'
with (s'' , (t₂ , s'≼s'')) ← m₂ s' =
MkBoth (MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p) q
infixl 4 _update-reason_
_update-reason_ : ∀ {T : S → Set s} {{ r : Relaxable T }} →
{P : DependentPredicate T} {Q : DependentPredicate T}
{{P-Mono : MonotonicPredicate P}}
{m : MonotonicState T} {mod : ∀ (s : S) → T s → Σ S (λ s' → s ≼ s')} →
always P m → (∀ (s : S) (t : T s) →
Always P m → (∀ (s : S) (t : T s) →
let (s' , s≼s') = mod s t
in P s t → Q s' (Relaxable.relax r s≼s' t)) →
always (And P Q) (m update mod)
_update-reason_ {{r = r}} {{P-Mono = P-Mono}} {m = m} {mod = mod} aP modQ s
with p ← aP s
with (s' , (t , s≼s')) ← m s
with q ← modQ s' t p
with (s'' , s'≼s'') ← mod s' t =
(MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p , q)
Always (And P Q) (m update mod)
_update-reason_ {{r = r}} {P = P} {Q = Q} {{P-Mono = P-Mono}} {m = m} {mod = mod} (MkAlways aP) modQ =
MkAlways impl
where
impl : ∀ s₁ → let (s₂ , t , _) = (m update mod) s₁ in (And P Q) s₂ t
impl s
with p ← aP s
with (s' , (t , s≼s')) ← m s
with q ← modQ s' t p
with (s'' , s'≼s'') ← mod s' t =
MkAnd (MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p) q
infixl 4 _map-reason_
_map-reason_ : ∀ {T₁ T₂ : S → Set s}
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
{m : MonotonicState T₁}
{f : ∀ (s : S) → T₁ s → T₂ s} →
always P m → (∀ (s : S) (t₁ : T₁ s) (t₂ : T₂ s) → P s t₁ → Q s t₂) →
always Q (m map f)
_map-reason_ {m = m} {f = f} aP P⇒Q s
with p ← aP s
with (s' , (t₁ , s≼s')) ← m s = P⇒Q s' t₁ (f s' t₁) p
Always P m → (∀ (s : S) (t₁ : T₁ s) (t₂ : T₂ s) → P s t₁ → Q s t₂) →
Always Q (m map f)
_map-reason_ {P = P} {Q = Q} {m = m} {f = f} (MkAlways aP) P⇒Q =
MkAlways impl
where
impl : ∀ s₁ → let (s₂ , t , _) = (m map f) s₁ in Q s₂ t
impl s
with p ← aP s
with (s' , (t₁ , s≼s')) ← m s = P⇒Q s' t₁ (f s' t₁) p