Use 'data' instead of aliases to prove reasoning properties
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
855bf3f56c
commit
f3e0d5f2e3
|
@ -83,13 +83,15 @@ _map_ f fn s = let (s' , (t₁ , s≼s')) = f s in (s' , (fn s' t₁ , s≼s'))
|
|||
DependentPredicate : (S → Set s) → Set (lsuc s)
|
||||
DependentPredicate T = ∀ (s₁ : S) → T s₁ → Set s
|
||||
|
||||
Both : {T₁ T₂ : S → Set s} → DependentPredicate T₁ → DependentPredicate T₂ →
|
||||
DependentPredicate (T₁ ⊗ T₂)
|
||||
Both P Q = (λ { s (t₁ , t₂) → (P s t₁ × Q s t₂) })
|
||||
data Both {T₁ T₂ : S → Set s}
|
||||
(P : DependentPredicate T₁)
|
||||
(Q : DependentPredicate T₂) : DependentPredicate (T₁ ⊗ T₂) where
|
||||
MkBoth : ∀ {s : S} {t₁ : T₁ s} {t₂ : T₂ s} → P s t₁ → Q s t₂ → Both P Q s (t₁ , t₂)
|
||||
|
||||
And : {T : S → Set s} → DependentPredicate T → DependentPredicate T →
|
||||
DependentPredicate T
|
||||
And P Q = (λ { s t → (P s t × Q s t) })
|
||||
data And {T : S → Set s}
|
||||
(P : DependentPredicate T)
|
||||
(Q : DependentPredicate T) : DependentPredicate T where
|
||||
MkAnd : ∀ {s : S} {t : T s} → P s t → Q s t → And P Q s t
|
||||
|
||||
-- Since monotnic functions keep adding on to the state, proofs of
|
||||
-- predicates over their outputs go stale fast (they describe old values of
|
||||
|
@ -101,48 +103,82 @@ record MonotonicPredicate {T : S → Set s} {{ r : Relaxable T }} (P : Dependent
|
|||
field relaxPredicate : ∀ (s₁ s₂ : S) (t₁ : T s₁) (s₁≼s₂ : s₁ ≼ s₂) →
|
||||
P s₁ t₁ → P s₂ (Relaxable.relax r s₁≼s₂ t₁)
|
||||
|
||||
instance
|
||||
BothMonotonic : ∀ {T₁ : S → Set s} {T₂ : S → Set s}
|
||||
{{ _ : Relaxable T₁ }} {{ _ : Relaxable T₂ }}
|
||||
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
|
||||
{{_ : MonotonicPredicate P}} {{_ : MonotonicPredicate Q}} →
|
||||
MonotonicPredicate (Both P Q)
|
||||
BothMonotonic {{_}} {{_}} {{P-Mono}} {{Q-Mono}} = record
|
||||
{ relaxPredicate = (λ { s₁ s₂ (t₁ , t₂) s₁≼s₂ (MkBoth p q) →
|
||||
MkBoth (MonotonicPredicate.relaxPredicate P-Mono s₁ s₂ t₁ s₁≼s₂ p)
|
||||
(MonotonicPredicate.relaxPredicate Q-Mono s₁ s₂ t₂ s₁≼s₂ q)})
|
||||
}
|
||||
|
||||
AndMonotonic : ∀ {T : S → Set s} {{ _ : Relaxable T }}
|
||||
{P : DependentPredicate T} {Q : DependentPredicate T}
|
||||
{{_ : MonotonicPredicate P}} {{_ : MonotonicPredicate Q}} →
|
||||
MonotonicPredicate (And P Q)
|
||||
AndMonotonic {{_}} {{P-Mono}} {{Q-Mono}} = record
|
||||
{ relaxPredicate = (λ { s₁ s₂ t s₁≼s₂ (MkAnd p q) →
|
||||
MkAnd (MonotonicPredicate.relaxPredicate P-Mono s₁ s₂ t s₁≼s₂ p)
|
||||
(MonotonicPredicate.relaxPredicate Q-Mono s₁ s₂ t s₁≼s₂ q)})
|
||||
}
|
||||
|
||||
-- A MonotonicState "monad" m has a certain property if its ouputs satisfy that
|
||||
-- property for all inputs.
|
||||
|
||||
always : ∀ {T : S → Set s} → DependentPredicate T → MonotonicState T → Set s
|
||||
always P m = ∀ s₁ → let (s₂ , t , _) = m s₁ in P s₂ t
|
||||
data Always {T : S → Set s} (P : DependentPredicate T) (m : MonotonicState T) : Set s where
|
||||
MkAlways : (∀ s₁ → let (s₂ , t , _) = m s₁ in P s₂ t) → Always P m
|
||||
|
||||
infixr 4 _⟨⊗⟩-reason_
|
||||
_⟨⊗⟩-reason_ : ∀ {T₁ T₂ : S → Set s} {{ _ : Relaxable T₁ }}
|
||||
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
|
||||
{{P-Mono : MonotonicPredicate P}}
|
||||
{m₁ : MonotonicState T₁} {m₂ : MonotonicState T₂} →
|
||||
always P m₁ → always Q m₂ → always (Both P Q) (m₁ ⟨⊗⟩ m₂)
|
||||
_⟨⊗⟩-reason_ {{P-Mono = P-Mono}} {m₁ = m₁} {m₂ = m₂} aP aQ s
|
||||
Always P m₁ → Always Q m₂ → Always (Both P Q) (m₁ ⟨⊗⟩ m₂)
|
||||
_⟨⊗⟩-reason_ {P = P} {Q = Q} {{P-Mono = P-Mono}} {m₁ = m₁} {m₂ = m₂} (MkAlways aP) (MkAlways aQ) =
|
||||
MkAlways impl
|
||||
where
|
||||
impl : ∀ s₁ → let (s₂ , t , _) = (m₁ ⟨⊗⟩ m₂) s₁ in (Both P Q) s₂ t
|
||||
impl s
|
||||
with p ← aP s
|
||||
with (s' , (t₁ , s≼s')) ← m₁ s
|
||||
with q ← aQ s'
|
||||
with (s'' , (t₂ , s'≼s'')) ← m₂ s' =
|
||||
(MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p , q)
|
||||
MkBoth (MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p) q
|
||||
|
||||
infixl 4 _update-reason_
|
||||
_update-reason_ : ∀ {T : S → Set s} {{ r : Relaxable T }} →
|
||||
{P : DependentPredicate T} {Q : DependentPredicate T}
|
||||
{{P-Mono : MonotonicPredicate P}}
|
||||
{m : MonotonicState T} {mod : ∀ (s : S) → T s → Σ S (λ s' → s ≼ s')} →
|
||||
always P m → (∀ (s : S) (t : T s) →
|
||||
Always P m → (∀ (s : S) (t : T s) →
|
||||
let (s' , s≼s') = mod s t
|
||||
in P s t → Q s' (Relaxable.relax r s≼s' t)) →
|
||||
always (And P Q) (m update mod)
|
||||
_update-reason_ {{r = r}} {{P-Mono = P-Mono}} {m = m} {mod = mod} aP modQ s
|
||||
Always (And P Q) (m update mod)
|
||||
_update-reason_ {{r = r}} {P = P} {Q = Q} {{P-Mono = P-Mono}} {m = m} {mod = mod} (MkAlways aP) modQ =
|
||||
MkAlways impl
|
||||
where
|
||||
impl : ∀ s₁ → let (s₂ , t , _) = (m update mod) s₁ in (And P Q) s₂ t
|
||||
impl s
|
||||
with p ← aP s
|
||||
with (s' , (t , s≼s')) ← m s
|
||||
with q ← modQ s' t p
|
||||
with (s'' , s'≼s'') ← mod s' t =
|
||||
(MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p , q)
|
||||
MkAnd (MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p) q
|
||||
|
||||
infixl 4 _map-reason_
|
||||
_map-reason_ : ∀ {T₁ T₂ : S → Set s}
|
||||
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
|
||||
{m : MonotonicState T₁}
|
||||
{f : ∀ (s : S) → T₁ s → T₂ s} →
|
||||
always P m → (∀ (s : S) (t₁ : T₁ s) (t₂ : T₂ s) → P s t₁ → Q s t₂) →
|
||||
always Q (m map f)
|
||||
_map-reason_ {m = m} {f = f} aP P⇒Q s
|
||||
Always P m → (∀ (s : S) (t₁ : T₁ s) (t₂ : T₂ s) → P s t₁ → Q s t₂) →
|
||||
Always Q (m map f)
|
||||
_map-reason_ {P = P} {Q = Q} {m = m} {f = f} (MkAlways aP) P⇒Q =
|
||||
MkAlways impl
|
||||
where
|
||||
impl : ∀ s₁ → let (s₂ , t , _) = (m map f) s₁ in Q s₂ t
|
||||
impl s
|
||||
with p ← aP s
|
||||
with (s' , (t₁ , s≼s')) ← m s = P⇒Q s' t₁ (f s' t₁) p
|
||||
|
|
Loading…
Reference in New Issue
Block a user