Generalize chains to allow equivalences

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2023-09-03 21:05:57 -07:00
parent 67e96b27cf
commit fb86d3f84f
2 changed files with 54 additions and 23 deletions

View File

@ -1,21 +1,37 @@
module Chain where open import Equivalence
module Chain {a} {A : Set a}
(_≈_ : A A Set a)
(≈-equiv : IsEquivalence A _≈_)
(_R_ : A A Set a)
(R-≈-cong : {a₁ a₁' a₂ a₂'} a₁ a₁' a₂ a₂' a₁ R a₂ a₁' R a₂') where
open import Data.Nat as Nat using (; suc; _+_; _≤_) open import Data.Nat as Nat using (; suc; _+_; _≤_)
open import Data.Product using (_×_; Σ; _,_) open import Data.Product using (_×_; Σ; _,_)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl) open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl)
module _ {a} {A : Set a} (_R_ : A A Set a) where open IsEquivalence ≈-equiv
module _ where
data Chain : A A Set a where data Chain : A A Set a where
done : {a : A} Chain a a 0 done : {a a' : A} a a' Chain a a' 0
step : {a₁ a₂ a₃ : A} {n : } a₁ R a₂ Chain a₂ a₃ n Chain a₁ a₃ (suc n) step : {a₁ a₂ a₂' a₃ : A} {n : } a₁ R a₂ a₂ a₂' Chain a₂ a₃ n Chain a₁ a₃ (suc n)
Chain-≈-cong₁ : {a₁ a₁' a₂} {n : } a₁ a₁' Chain a₁ a₂ n Chain a₁' a₂ n
Chain-≈-cong₁ a₁≈a₁' (done a₁≈a₂) = done (≈-trans (≈-sym a₁≈a₁') a₁≈a₂)
Chain-≈-cong₁ a₁≈a₁' (step a₁Ra a≈a' a'a₂) = step (R-≈-cong a₁≈a₁' ≈-refl a₁Ra) a≈a' a'a₂
Chain-≈-cong₂ : {a₁ a₂ a₂'} {n : } a₂ a₂' Chain a₁ a₂ n Chain a₁ a₂' n
Chain-≈-cong₂ a₂≈a₂' (done a₁≈a₂) = done (≈-trans a₁≈a₂ a₂≈a₂')
Chain-≈-cong₂ a₂≈a₂' (step a₁Ra a≈a' a'a₂) = step a₁Ra a≈a' (Chain-≈-cong₂ a₂≈a₂' a'a₂)
concat : {a₁ a₂ a₃ : A} {n₁ n₂ : } Chain a₁ a₂ n₁ Chain a₂ a₃ n₂ Chain a₁ a₃ (n₁ + n₂) concat : {a₁ a₂ a₃ : A} {n₁ n₂ : } Chain a₁ a₂ n₁ Chain a₂ a₃ n₂ Chain a₁ a₃ (n₁ + n₂)
concat done a₂a₃ = a₂a₃ concat (done a₁≈a₂) a₂a₃ = Chain-≈-cong₁ (≈-sym a₁≈a₂) a₂a₃
concat (step a₁Ra aa₂) a₂a₃ = step a₁Ra (concat aa₂ a₂a₃) concat (step a₁Ra a≈a' a'a₂) a₂a₃ = step a₁Ra a≈a' (concat a'a₂ a₂a₃)
empty-≡ : {a₁ a₂ : A} Chain a₁ a₂ 0 a₁ a₂ empty-≡ : {a₁ a₂ : A} Chain a₁ a₂ 0 a₁ a₂
empty-≡ done = refl empty-≡ (done a₁≈a₂) = a₁≈a₂
Bounded : Set a Bounded : Set a
Bounded bound = {a₁ a₂ : A} {n : } Chain a₁ a₂ n n bound Bounded bound = {a₁ a₂ : A} {n : } Chain a₁ a₂ n n bound

View File

@ -1,11 +1,12 @@
module Lattice where module Lattice where
open import Equivalence open import Equivalence
open import Chain import Chain
import Data.Nat.Properties as NatProps import Data.Nat.Properties as NatProps
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym) open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym)
open import Relation.Binary.Definitions open import Relation.Binary.Definitions
open import Relation.Binary.Core using (_Preserves_⟶_ )
open import Relation.Nullary using (Dec; ¬_) open import Relation.Nullary using (Dec; ¬_)
open import Data.Nat as Nat using (; _≤_; _+_) open import Data.Nat as Nat using (; _≤_; _+_)
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂) open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
@ -80,7 +81,7 @@ record IsFiniteHeightLattice {a} (A : Set a)
field field
isLattice : IsLattice A _≈_ _⊔_ _⊓_ isLattice : IsLattice A _≈_ _⊔_ _⊓_
fixedHeight : Chain.Height (IsLattice._≺_ isLattice) h fixedHeight : Chain.Height (_≈_) (IsLattice.≈-equiv isLattice) (IsLattice._≺_ isLattice) (IsLattice.≺-cong isLattice) h
open IsLattice isLattice public open IsLattice isLattice public
@ -96,15 +97,23 @@ module ChainMapping {a b} {A : Set a} {B : Set b}
{_⊔₁_ : A A A} {_⊔₂_ : B B B} {_⊔₁_ : A A A} {_⊔₂_ : B B B}
(slA : IsSemilattice A _≈₁_ _⊔₁_) (slB : IsSemilattice B _≈₂_ _⊔₂_) where (slA : IsSemilattice A _≈₁_ _⊔₁_) (slB : IsSemilattice B _≈₂_ _⊔₂_) where
open IsSemilattice slA renaming (_≼_ to _≼₁_; _≺_ to _≺₁_; ≈-equiv to ≈₁-equiv) open IsSemilattice slA renaming (_≼_ to _≼₁_; _≺_ to _≺₁_; ≈-equiv to ≈₁-equiv; ≺-cong to ≺₁-cong)
open IsSemilattice slB renaming (_≼_ to _≼₂_; _≺_ to _≺₂_; ≈-equiv to ≈₂-equiv) open IsSemilattice slB renaming (_≼_ to _≼₂_; _≺_ to _≺₂_; ≈-equiv to ≈₂-equiv; ≺-cong to ≺₂-cong)
Chain-map : (f : A B) Monotonic _≼₁_ _≼₂_ f Injective _≈₁_ _≈₂_ f open Chain _≈₁_ ≈₁-equiv _≺₁_ ≺₁-cong using () renaming (Chain to Chain₁; step to step₁; done to done₁)
{a₁ a₂ : A} {n : } Chain _≺₁_ a₁ a₂ n Chain _≺₂_ (f a₁) (f a₂) n open Chain _≈₂_ ≈₂-equiv _≺₂_ ≺₂-cong using () renaming (Chain to Chain₂; step to step₂; done to done₂)
Chain-map f Monotonicᶠ Injectiveᶠ done = done
Chain-map f Monotonicᶠ Injectiveᶠ (step (a₁≼₁a , a₁̷≈₁a) aa₂) = Chain-map : (f : A B)
Monotonic _≼₁_ _≼₂_ f
Injective _≈₁_ _≈₂_ f
f Preserves _≈₁_ _≈₂_
{a₁ a₂ : A} {n : } Chain₁ a₁ a₂ n Chain₂ (f a₁) (f a₂) n
Chain-map f Monotonicᶠ Injectiveᶠ Preservesᶠ (done₁ a₁≈a₂) =
done₂ (Preservesᶠ a₁≈a₂)
Chain-map f Monotonicᶠ Injectiveᶠ Preservesᶠ (step₁ (a₁≼₁a , a₁̷≈₁a) a≈₁a' a'a₂) =
let fa₁≺₂fa = (Monotonicᶠ a₁≼₁a , λ fa₁≈₂fa a₁̷≈₁a (Injectiveᶠ fa₁≈₂fa)) let fa₁≺₂fa = (Monotonicᶠ a₁≼₁a , λ fa₁≈₂fa a₁̷≈₁a (Injectiveᶠ fa₁≈₂fa))
in step fa₁≺₂fa (Chain-map f Monotonicᶠ Injectiveᶠ aa₂) fa≈fa' = Preservesᶠ a≈₁a'
in step₂ fa₁≺₂fa fa≈fa' (Chain-map f Monotonicᶠ Injectiveᶠ Preservesᶠ a'a₂)
record Semilattice {a} (A : Set a) : Set (lsuc a) where record Semilattice {a} (A : Set a) : Set (lsuc a) where
field field
@ -354,9 +363,9 @@ module IsFiniteHeightLatticeInstances where
module ProdLattice = IsLatticeInstances.ForProd _≈₁_ _≈₂_ _⊔₁_ _⊓₁_ _⊔₂_ _⊓₂_ (IsFiniteHeightLattice.isLattice lA) (IsFiniteHeightLattice.isLattice lB) module ProdLattice = IsLatticeInstances.ForProd _≈₁_ _≈₂_ _⊔₁_ _⊓₁_ _⊔₂_ _⊓₂_ (IsFiniteHeightLattice.isLattice lA) (IsFiniteHeightLattice.isLattice lB)
open ProdLattice using (_⊔_; _⊓_; _≈_) public open ProdLattice using (_⊔_; _⊓_; _≈_) public
open IsLattice ProdLattice.ProdIsLattice using (_≼_; _≺_) open IsLattice ProdLattice.ProdIsLattice using (_≼_; _≺_; ≺-cong; ≈-equiv)
open IsFiniteHeightLattice lA using () renaming (⊔-idemp to ⊔₁-idemp; _≼_ to _≼₁_) open IsFiniteHeightLattice lA using () renaming (⊔-idemp to ⊔₁-idemp; _≼_ to _≼₁_; ≈-refl to ≈₁-refl)
open IsFiniteHeightLattice lB using () renaming (⊔-idemp to ⊔₂-idemp; _≼_ to _≼₂_) open IsFiniteHeightLattice lB using () renaming (⊔-idemp to ⊔₂-idemp; _≼_ to _≼₂_; ≈-refl to ≈₂-refl)
module ChainMapping = ChainMapping (IsFiniteHeightLattice.joinSemilattice lA) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice) module ChainMapping = ChainMapping (IsFiniteHeightLattice.joinSemilattice lA) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice)
module ChainMapping = ChainMapping (IsFiniteHeightLattice.joinSemilattice lB) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice) module ChainMapping = ChainMapping (IsFiniteHeightLattice.joinSemilattice lB) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice)
@ -365,9 +374,15 @@ module IsFiniteHeightLatticeInstances where
a,∙-Monotonic : (a : A) Monotonic _≼₂_ _≼_ (λ b (a , b)) a,∙-Monotonic : (a : A) Monotonic _≼₂_ _≼_ (λ b (a , b))
a,∙-Monotonic a {b₁} {b₂} (b , b₁⊔b≈b₂) = ((a , b) , (⊔₁-idemp a , b₁⊔b≈b₂)) a,∙-Monotonic a {b₁} {b₂} (b , b₁⊔b≈b₂) = ((a , b) , (⊔₁-idemp a , b₁⊔b≈b₂))
a,∙-Preserves-≈₂ : (a : A) (λ b (a , b)) Preserves _≈₂_ _≈_
a,∙-Preserves-≈₂ a {b₁} {b₂} b₁≈b₂ = (≈₁-refl , b₁≈b₂)
∙,b-Monotonic : (b : B) Monotonic _≼₁_ _≼_ (λ a (a , b)) ∙,b-Monotonic : (b : B) Monotonic _≼₁_ _≼_ (λ a (a , b))
∙,b-Monotonic b {a₁} {a₂} (a , a₁⊔a≈a₂) = ((a , b) , (a₁⊔a≈a₂ , ⊔₂-idemp b)) ∙,b-Monotonic b {a₁} {a₂} (a , a₁⊔a≈a₂) = ((a , b) , (a₁⊔a≈a₂ , ⊔₂-idemp b))
∙,b-Preserves-≈₁ : (b : B) (λ a (a , b)) Preserves _≈₁_ _≈_
∙,b-Preserves-≈₁ b {a₁} {a₂} a₁≈a₂ = (a₁≈a₂ , ≈₂-refl)
amin : A amin : A
amin = proj₁ (proj₁ (proj₁ (IsFiniteHeightLattice.fixedHeight lA))) amin = proj₁ (proj₁ (proj₁ (IsFiniteHeightLattice.fixedHeight lA)))
@ -385,9 +400,9 @@ module IsFiniteHeightLatticeInstances where
{ isLattice = ProdLattice.ProdIsLattice { isLattice = ProdLattice.ProdIsLattice
; fixedHeight = ; fixedHeight =
( ( ((amin , bmin) , (amax , bmax)) ( ( ((amin , bmin) , (amax , bmax))
, concat _≺_ , Chain.concat _≈_ ≈-equiv _≺_ ≺-cong
(ChainMapping₁.Chain-map (λ a (a , bmin)) (∙,b-Monotonic _) proj₁ (proj₂ (proj₁ (IsFiniteHeightLattice.fixedHeight lA)))) (ChainMapping₁.Chain-map (λ a (a , bmin)) (∙,b-Monotonic _) proj₁ (∙,b-Preserves-≈₁ _) (proj₂ (proj₁ (IsFiniteHeightLattice.fixedHeight lA))))
(ChainMapping₂.Chain-map (λ b (amax , b)) (a,∙-Monotonic _) proj₂ (proj₂ (proj₁ (IsFiniteHeightLattice.fixedHeight lB)))) (ChainMapping₂.Chain-map (λ b (amax , b)) (a,∙-Monotonic _) proj₂ (a,∙-Preserves-≈₂ _) (proj₂ (proj₁ (IsFiniteHeightLattice.fixedHeight lB))))
) )
, _ , _
) )