Generalize chains to allow equivalences
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
67e96b27cf
commit
fb86d3f84f
32
Chain.agda
32
Chain.agda
|
@ -1,21 +1,37 @@
|
||||||
module Chain where
|
open import Equivalence
|
||||||
|
|
||||||
|
module Chain {a} {A : Set a}
|
||||||
|
(_≈_ : A → A → Set a)
|
||||||
|
(≈-equiv : IsEquivalence A _≈_)
|
||||||
|
(_R_ : A → A → Set a)
|
||||||
|
(R-≈-cong : ∀ {a₁ a₁' a₂ a₂'} → a₁ ≈ a₁' → a₂ ≈ a₂' → a₁ R a₂ → a₁' R a₂') where
|
||||||
|
|
||||||
open import Data.Nat as Nat using (ℕ; suc; _+_; _≤_)
|
open import Data.Nat as Nat using (ℕ; suc; _+_; _≤_)
|
||||||
open import Data.Product using (_×_; Σ; _,_)
|
open import Data.Product using (_×_; Σ; _,_)
|
||||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl)
|
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl)
|
||||||
|
|
||||||
module _ {a} {A : Set a} (_R_ : A → A → Set a) where
|
open IsEquivalence ≈-equiv
|
||||||
|
|
||||||
|
module _ where
|
||||||
|
|
||||||
data Chain : A → A → ℕ → Set a where
|
data Chain : A → A → ℕ → Set a where
|
||||||
done : ∀ {a : A} → Chain a a 0
|
done : ∀ {a a' : A} → a ≈ a' → Chain a a' 0
|
||||||
step : ∀ {a₁ a₂ a₃ : A} {n : ℕ} → a₁ R a₂ → Chain a₂ a₃ n → Chain a₁ a₃ (suc n)
|
step : ∀ {a₁ a₂ a₂' a₃ : A} {n : ℕ} → a₁ R a₂ → a₂ ≈ a₂' → Chain a₂ a₃ n → Chain a₁ a₃ (suc n)
|
||||||
|
|
||||||
|
Chain-≈-cong₁ : ∀ {a₁ a₁' a₂} {n : ℕ} → a₁ ≈ a₁' → Chain a₁ a₂ n → Chain a₁' a₂ n
|
||||||
|
Chain-≈-cong₁ a₁≈a₁' (done a₁≈a₂) = done (≈-trans (≈-sym a₁≈a₁') a₁≈a₂)
|
||||||
|
Chain-≈-cong₁ a₁≈a₁' (step a₁Ra a≈a' a'a₂) = step (R-≈-cong a₁≈a₁' ≈-refl a₁Ra) a≈a' a'a₂
|
||||||
|
|
||||||
|
Chain-≈-cong₂ : ∀ {a₁ a₂ a₂'} {n : ℕ} → a₂ ≈ a₂' → Chain a₁ a₂ n → Chain a₁ a₂' n
|
||||||
|
Chain-≈-cong₂ a₂≈a₂' (done a₁≈a₂) = done (≈-trans a₁≈a₂ a₂≈a₂')
|
||||||
|
Chain-≈-cong₂ a₂≈a₂' (step a₁Ra a≈a' a'a₂) = step a₁Ra a≈a' (Chain-≈-cong₂ a₂≈a₂' a'a₂)
|
||||||
|
|
||||||
concat : ∀ {a₁ a₂ a₃ : A} {n₁ n₂ : ℕ} → Chain a₁ a₂ n₁ → Chain a₂ a₃ n₂ → Chain a₁ a₃ (n₁ + n₂)
|
concat : ∀ {a₁ a₂ a₃ : A} {n₁ n₂ : ℕ} → Chain a₁ a₂ n₁ → Chain a₂ a₃ n₂ → Chain a₁ a₃ (n₁ + n₂)
|
||||||
concat done a₂a₃ = a₂a₃
|
concat (done a₁≈a₂) a₂a₃ = Chain-≈-cong₁ (≈-sym a₁≈a₂) a₂a₃
|
||||||
concat (step a₁Ra aa₂) a₂a₃ = step a₁Ra (concat aa₂ a₂a₃)
|
concat (step a₁Ra a≈a' a'a₂) a₂a₃ = step a₁Ra a≈a' (concat a'a₂ a₂a₃)
|
||||||
|
|
||||||
empty-≡ : ∀ {a₁ a₂ : A} → Chain a₁ a₂ 0 → a₁ ≡ a₂
|
empty-≡ : ∀ {a₁ a₂ : A} → Chain a₁ a₂ 0 → a₁ ≈ a₂
|
||||||
empty-≡ done = refl
|
empty-≡ (done a₁≈a₂) = a₁≈a₂
|
||||||
|
|
||||||
Bounded : ℕ → Set a
|
Bounded : ℕ → Set a
|
||||||
Bounded bound = ∀ {a₁ a₂ : A} {n : ℕ} → Chain a₁ a₂ n → n ≤ bound
|
Bounded bound = ∀ {a₁ a₂ : A} {n : ℕ} → Chain a₁ a₂ n → n ≤ bound
|
||||||
|
|
45
Lattice.agda
45
Lattice.agda
|
@ -1,11 +1,12 @@
|
||||||
module Lattice where
|
module Lattice where
|
||||||
|
|
||||||
open import Equivalence
|
open import Equivalence
|
||||||
open import Chain
|
import Chain
|
||||||
|
|
||||||
import Data.Nat.Properties as NatProps
|
import Data.Nat.Properties as NatProps
|
||||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym)
|
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym)
|
||||||
open import Relation.Binary.Definitions
|
open import Relation.Binary.Definitions
|
||||||
|
open import Relation.Binary.Core using (_Preserves_⟶_ )
|
||||||
open import Relation.Nullary using (Dec; ¬_)
|
open import Relation.Nullary using (Dec; ¬_)
|
||||||
open import Data.Nat as Nat using (ℕ; _≤_; _+_)
|
open import Data.Nat as Nat using (ℕ; _≤_; _+_)
|
||||||
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
|
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
|
||||||
|
@ -80,7 +81,7 @@ record IsFiniteHeightLattice {a} (A : Set a)
|
||||||
|
|
||||||
field
|
field
|
||||||
isLattice : IsLattice A _≈_ _⊔_ _⊓_
|
isLattice : IsLattice A _≈_ _⊔_ _⊓_
|
||||||
fixedHeight : Chain.Height (IsLattice._≺_ isLattice) h
|
fixedHeight : Chain.Height (_≈_) (IsLattice.≈-equiv isLattice) (IsLattice._≺_ isLattice) (IsLattice.≺-cong isLattice) h
|
||||||
|
|
||||||
open IsLattice isLattice public
|
open IsLattice isLattice public
|
||||||
|
|
||||||
|
@ -96,15 +97,23 @@ module ChainMapping {a b} {A : Set a} {B : Set b}
|
||||||
{_⊔₁_ : A → A → A} {_⊔₂_ : B → B → B}
|
{_⊔₁_ : A → A → A} {_⊔₂_ : B → B → B}
|
||||||
(slA : IsSemilattice A _≈₁_ _⊔₁_) (slB : IsSemilattice B _≈₂_ _⊔₂_) where
|
(slA : IsSemilattice A _≈₁_ _⊔₁_) (slB : IsSemilattice B _≈₂_ _⊔₂_) where
|
||||||
|
|
||||||
open IsSemilattice slA renaming (_≼_ to _≼₁_; _≺_ to _≺₁_; ≈-equiv to ≈₁-equiv)
|
open IsSemilattice slA renaming (_≼_ to _≼₁_; _≺_ to _≺₁_; ≈-equiv to ≈₁-equiv; ≺-cong to ≺₁-cong)
|
||||||
open IsSemilattice slB renaming (_≼_ to _≼₂_; _≺_ to _≺₂_; ≈-equiv to ≈₂-equiv)
|
open IsSemilattice slB renaming (_≼_ to _≼₂_; _≺_ to _≺₂_; ≈-equiv to ≈₂-equiv; ≺-cong to ≺₂-cong)
|
||||||
|
|
||||||
Chain-map : ∀ (f : A → B) → Monotonic _≼₁_ _≼₂_ f → Injective _≈₁_ _≈₂_ f →
|
open Chain _≈₁_ ≈₁-equiv _≺₁_ ≺₁-cong using () renaming (Chain to Chain₁; step to step₁; done to done₁)
|
||||||
∀ {a₁ a₂ : A} {n : ℕ} → Chain _≺₁_ a₁ a₂ n → Chain _≺₂_ (f a₁) (f a₂) n
|
open Chain _≈₂_ ≈₂-equiv _≺₂_ ≺₂-cong using () renaming (Chain to Chain₂; step to step₂; done to done₂)
|
||||||
Chain-map f Monotonicᶠ Injectiveᶠ done = done
|
|
||||||
Chain-map f Monotonicᶠ Injectiveᶠ (step (a₁≼₁a , a₁̷≈₁a) aa₂) =
|
Chain-map : ∀ (f : A → B) →
|
||||||
|
Monotonic _≼₁_ _≼₂_ f →
|
||||||
|
Injective _≈₁_ _≈₂_ f →
|
||||||
|
f Preserves _≈₁_ ⟶ _≈₂_ →
|
||||||
|
∀ {a₁ a₂ : A} {n : ℕ} → Chain₁ a₁ a₂ n → Chain₂ (f a₁) (f a₂) n
|
||||||
|
Chain-map f Monotonicᶠ Injectiveᶠ Preservesᶠ (done₁ a₁≈a₂) =
|
||||||
|
done₂ (Preservesᶠ a₁≈a₂)
|
||||||
|
Chain-map f Monotonicᶠ Injectiveᶠ Preservesᶠ (step₁ (a₁≼₁a , a₁̷≈₁a) a≈₁a' a'a₂) =
|
||||||
let fa₁≺₂fa = (Monotonicᶠ a₁≼₁a , λ fa₁≈₂fa → a₁̷≈₁a (Injectiveᶠ fa₁≈₂fa))
|
let fa₁≺₂fa = (Monotonicᶠ a₁≼₁a , λ fa₁≈₂fa → a₁̷≈₁a (Injectiveᶠ fa₁≈₂fa))
|
||||||
in step fa₁≺₂fa (Chain-map f Monotonicᶠ Injectiveᶠ aa₂)
|
fa≈fa' = Preservesᶠ a≈₁a'
|
||||||
|
in step₂ fa₁≺₂fa fa≈fa' (Chain-map f Monotonicᶠ Injectiveᶠ Preservesᶠ a'a₂)
|
||||||
|
|
||||||
record Semilattice {a} (A : Set a) : Set (lsuc a) where
|
record Semilattice {a} (A : Set a) : Set (lsuc a) where
|
||||||
field
|
field
|
||||||
|
@ -354,9 +363,9 @@ module IsFiniteHeightLatticeInstances where
|
||||||
|
|
||||||
module ProdLattice = IsLatticeInstances.ForProd _≈₁_ _≈₂_ _⊔₁_ _⊓₁_ _⊔₂_ _⊓₂_ (IsFiniteHeightLattice.isLattice lA) (IsFiniteHeightLattice.isLattice lB)
|
module ProdLattice = IsLatticeInstances.ForProd _≈₁_ _≈₂_ _⊔₁_ _⊓₁_ _⊔₂_ _⊓₂_ (IsFiniteHeightLattice.isLattice lA) (IsFiniteHeightLattice.isLattice lB)
|
||||||
open ProdLattice using (_⊔_; _⊓_; _≈_) public
|
open ProdLattice using (_⊔_; _⊓_; _≈_) public
|
||||||
open IsLattice ProdLattice.ProdIsLattice using (_≼_; _≺_)
|
open IsLattice ProdLattice.ProdIsLattice using (_≼_; _≺_; ≺-cong; ≈-equiv)
|
||||||
open IsFiniteHeightLattice lA using () renaming (⊔-idemp to ⊔₁-idemp; _≼_ to _≼₁_)
|
open IsFiniteHeightLattice lA using () renaming (⊔-idemp to ⊔₁-idemp; _≼_ to _≼₁_; ≈-refl to ≈₁-refl)
|
||||||
open IsFiniteHeightLattice lB using () renaming (⊔-idemp to ⊔₂-idemp; _≼_ to _≼₂_)
|
open IsFiniteHeightLattice lB using () renaming (⊔-idemp to ⊔₂-idemp; _≼_ to _≼₂_; ≈-refl to ≈₂-refl)
|
||||||
|
|
||||||
module ChainMapping₁ = ChainMapping (IsFiniteHeightLattice.joinSemilattice lA) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice)
|
module ChainMapping₁ = ChainMapping (IsFiniteHeightLattice.joinSemilattice lA) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice)
|
||||||
module ChainMapping₂ = ChainMapping (IsFiniteHeightLattice.joinSemilattice lB) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice)
|
module ChainMapping₂ = ChainMapping (IsFiniteHeightLattice.joinSemilattice lB) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice)
|
||||||
|
@ -365,9 +374,15 @@ module IsFiniteHeightLatticeInstances where
|
||||||
a,∙-Monotonic : ∀ (a : A) → Monotonic _≼₂_ _≼_ (λ b → (a , b))
|
a,∙-Monotonic : ∀ (a : A) → Monotonic _≼₂_ _≼_ (λ b → (a , b))
|
||||||
a,∙-Monotonic a {b₁} {b₂} (b , b₁⊔b≈b₂) = ((a , b) , (⊔₁-idemp a , b₁⊔b≈b₂))
|
a,∙-Monotonic a {b₁} {b₂} (b , b₁⊔b≈b₂) = ((a , b) , (⊔₁-idemp a , b₁⊔b≈b₂))
|
||||||
|
|
||||||
|
a,∙-Preserves-≈₂ : ∀ (a : A) → (λ b → (a , b)) Preserves _≈₂_ ⟶ _≈_
|
||||||
|
a,∙-Preserves-≈₂ a {b₁} {b₂} b₁≈b₂ = (≈₁-refl , b₁≈b₂)
|
||||||
|
|
||||||
∙,b-Monotonic : ∀ (b : B) → Monotonic _≼₁_ _≼_ (λ a → (a , b))
|
∙,b-Monotonic : ∀ (b : B) → Monotonic _≼₁_ _≼_ (λ a → (a , b))
|
||||||
∙,b-Monotonic b {a₁} {a₂} (a , a₁⊔a≈a₂) = ((a , b) , (a₁⊔a≈a₂ , ⊔₂-idemp b))
|
∙,b-Monotonic b {a₁} {a₂} (a , a₁⊔a≈a₂) = ((a , b) , (a₁⊔a≈a₂ , ⊔₂-idemp b))
|
||||||
|
|
||||||
|
∙,b-Preserves-≈₁ : ∀ (b : B) → (λ a → (a , b)) Preserves _≈₁_ ⟶ _≈_
|
||||||
|
∙,b-Preserves-≈₁ b {a₁} {a₂} a₁≈a₂ = (a₁≈a₂ , ≈₂-refl)
|
||||||
|
|
||||||
amin : A
|
amin : A
|
||||||
amin = proj₁ (proj₁ (proj₁ (IsFiniteHeightLattice.fixedHeight lA)))
|
amin = proj₁ (proj₁ (proj₁ (IsFiniteHeightLattice.fixedHeight lA)))
|
||||||
|
|
||||||
|
@ -385,9 +400,9 @@ module IsFiniteHeightLatticeInstances where
|
||||||
{ isLattice = ProdLattice.ProdIsLattice
|
{ isLattice = ProdLattice.ProdIsLattice
|
||||||
; fixedHeight =
|
; fixedHeight =
|
||||||
( ( ((amin , bmin) , (amax , bmax))
|
( ( ((amin , bmin) , (amax , bmax))
|
||||||
, concat _≺_
|
, Chain.concat _≈_ ≈-equiv _≺_ ≺-cong
|
||||||
(ChainMapping₁.Chain-map (λ a → (a , bmin)) (∙,b-Monotonic _) proj₁ (proj₂ (proj₁ (IsFiniteHeightLattice.fixedHeight lA))))
|
(ChainMapping₁.Chain-map (λ a → (a , bmin)) (∙,b-Monotonic _) proj₁ (∙,b-Preserves-≈₁ _) (proj₂ (proj₁ (IsFiniteHeightLattice.fixedHeight lA))))
|
||||||
(ChainMapping₂.Chain-map (λ b → (amax , b)) (a,∙-Monotonic _) proj₂ (proj₂ (proj₁ (IsFiniteHeightLattice.fixedHeight lB))))
|
(ChainMapping₂.Chain-map (λ b → (amax , b)) (a,∙-Monotonic _) proj₂ (a,∙-Preserves-≈₂ _) (proj₂ (proj₁ (IsFiniteHeightLattice.fixedHeight lB))))
|
||||||
)
|
)
|
||||||
, _
|
, _
|
||||||
)
|
)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user