Compare commits

..

10 Commits

Author SHA1 Message Date
8dc5c40eae Get everything compiling
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-13 14:13:44 -07:00
44f04e4020 Get forward analysis working again
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-13 14:08:40 -07:00
4fe0d147fa Adjust 'Program' to have a graph and basic blocks
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-13 13:39:15 -07:00
ba1c9b3ec8 Remove sketch if proof since the proof is done
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-13 12:31:04 -07:00
b6e357787f Add proof about 'both' and pairing
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-13 12:25:59 -07:00
ce3fa182fe Start formalizing monotonic function predicates
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-12 23:49:33 -07:00
71cb97ad8c Reorder some definitions
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-12 23:27:17 -07:00
57606636a7 Slightly format some code
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-12 23:22:31 -07:00
da2f7f51d7 Get Language typechecking again, finally
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-12 23:21:05 -07:00
2db11dcfc7 Use concatenation to represent adding new nodes
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-12 22:04:43 -07:00
5 changed files with 210 additions and 141 deletions

View File

@ -145,25 +145,33 @@ module WithProg (prog : Program) where
-- also monotonically; we derive the for-each-state update from
-- the Exercise 4.26 again.
updateVariablesFromStmt : BasicStmt VariableValues VariableValues
updateVariablesFromStmt (k e) vs = updateVariablesFromExpression k e vs
updateVariablesFromStmt noop vs = vs
updateVariablesFromStmt-Monoʳ : (bs : BasicStmt) Monotonic _≼ᵛ_ _≼ᵛ_ (updateVariablesFromStmt bs)
updateVariablesFromStmt-Monoʳ (k e) {vs₁} {vs₂} vs₁≼vs₂ = updateVariablesFromExpression-Mono k e {vs₁} {vs₂} vs₁≼vs₂
updateVariablesFromStmt-Monoʳ noop vs₁≼vs₂ = vs₁≼vs₂
updateVariablesForState : State StateVariables VariableValues
updateVariablesForState s sv
with code s
... | k e =
updateVariablesForState s sv =
let
bss = code s
(vs , s,vs∈sv) = locateᵐ {s} {sv} (states-in-Map s sv)
in
updateVariablesFromExpression k e vs
foldr updateVariablesFromStmt vs bss
updateVariablesForState-Monoʳ : (s : State) Monotonic _≼ᵐ_ _≼ᵛ_ (updateVariablesForState s)
updateVariablesForState-Monoʳ s {sv₁} {sv₂} sv₁≼sv₂
with code s
... | k e =
updateVariablesForState-Monoʳ s {sv₁} {sv₂} sv₁≼sv₂ =
let
bss = code s
(vs₁ , s,vs₁∈sv₁) = locateᵐ {s} {sv₁} (states-in-Map s sv₁)
(vs₂ , s,vs₂∈sv₂) = locateᵐ {s} {sv₂} (states-in-Map s sv₂)
vs₁≼vs₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ sv₁ sv₂ sv₁≼sv₂ s,vs₁∈sv₁ s,vs₂∈sv₂
in
updateVariablesFromExpression-Mono k e {vs₁} {vs₂} vs₁≼vs₂
foldr-Mono' (IsLattice.joinSemilattice isLatticeᵛ) bss
updateVariablesFromStmt updateVariablesFromStmt-Monoʳ
vs₁≼vs₂
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x x) (λ a₁≼a₂ a₁≼a₂) updateVariablesForState updateVariablesForState-Monoʳ states
renaming

View File

@ -5,24 +5,27 @@ open import Data.Nat.Properties using (m≤n⇒m≤n+o; ≤-reflexive; +-assoc;
open import Data.Integer using (; +_) renaming (_+_ to _+ᶻ_; _-_ to _-ᶻ_)
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
open import Data.Product.Properties using (≡-dec)
open import Data.Vec using (Vec; foldr; lookup; _∷_; []; _++_; cast)
open import Data.Vec.Properties using (++-assoc; ++-identityʳ; lookup-++ˡ; lookup-cast₁)
open import Data.Vec.Properties using (++-assoc; ++-identityʳ; lookup-++ˡ; lookup-cast₁; cast-sym)
open import Data.Vec.Relation.Binary.Equality.Cast using (cast-is-id)
open import Data.List using ([]; _∷_; List) renaming (foldr to foldrˡ; map to mapˡ; _++_ to _++ˡ_)
open import Data.List using ([]; _∷_; List) renaming (foldr to foldrˡ; map to mapˡ; filter to filterᶠ; _++_ to _++ˡ_)
open import Data.List.Properties using () renaming (++-assoc to ++ˡ-assoc; map-++ to mapˡ-++ˡ; ++-identityʳ to ++ˡ-identityʳ)
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
open import Data.List.Membership.Propositional.Properties using () renaming (∈-++⁺ʳ to ∈ˡ-++⁺ʳ)
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Data.List.Relation.Unary.Any as RelAny using ()
open import Data.List.Relation.Unary.Any.Properties using (++⁺ʳ)
open import Data.Fin using (Fin; suc; zero; from; inject₁; inject≤; _↑ʳ_; _↑ˡ_) renaming (_≟_ to _≟ᶠ_; cast to castᶠ)
open import Data.Fin.Properties using (suc-injective)
open import Data.Fin.Properties using (suc-injective) renaming (cast-is-id to castᶠ-is-id)
open import Relation.Binary.PropositionalEquality as Eq using (subst; cong; _≡_; sym; trans; refl)
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Decidable.Core using (does)
open import Function using (_∘_)
open Eq.≡-Reasoning
open import Lattice
open import Utils using (Unique; Unique-map; empty; push; x∈xs⇒fx∈fxs; _⊗_; _,_)
open import Utils using (Unique; Unique-map; push; x∈xs⇒fx∈fxs; _⊗_; _,_) renaming (empty to emptyᵘ; proj₁ to proj₁'; proj₂ to proj₂')
data Expr : Set where
_+_ : Expr Expr Expr
@ -34,6 +37,7 @@ data BasicStmt : Set where
_←_ : String Expr BasicStmt
noop : BasicStmt
infixr 2 _then_
data Stmt : Set where
⟨_⟩ : BasicStmt Stmt
_then_ : Stmt Stmt Stmt
@ -103,6 +107,13 @@ module Graphs where
nodes : Vec (List BasicStmt) size
edges : List Edge
empty : Graph
empty = record
{ size = 0
; nodes = []
; edges = []
}
↑ˡ-Edge : {n} (Fin n × Fin n) m (Fin (n +ⁿ m) × Fin (n +ⁿ m))
↑ˡ-Edge (idx₁ , idx₂) m = (idx₁ ↑ˡ m , idx₂ ↑ˡ m)
@ -114,45 +125,64 @@ module Graphs where
field
n :
sg₂≡sg₁+n : Graph.size g₂ Graph.size g₁ +ⁿ n
g₁[]≡g₂[] : (idx : Graph.Index g₁)
lookup (Graph.nodes g₁) idx
lookup (cast sg₂≡sg₁+n (Graph.nodes g₂)) (idx ↑ˡ n)
newNodes : Vec (List BasicStmt) n
nsg₂≡nsg₁++newNodes : cast sg₂≡sg₁+n (Graph.nodes g₂) Graph.nodes g₁ ++ newNodes
e∈g₁⇒e∈g₂ : {e : Graph.Edge g₁}
e ∈ˡ (Graph.edges g₁)
(↑ˡ-Edge e n) ∈ˡ (subst (λ m List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
castᵉ : {n m : } .(p : n m) (Fin n × Fin n) (Fin m × Fin m)
castᵉ p (idx₁ , idx₂) = (castᶠ p idx₁ , castᶠ p idx₂)
↑ˡ-assoc : {s n₁ n₂} (f : Fin s) (p : s +ⁿ (n₁ +ⁿ n₂) s +ⁿ n₁ +ⁿ n₂)
f ↑ˡ n₁ ↑ˡ n₂ castᶠ p (f ↑ˡ (n₁ +ⁿ n₂))
↑ˡ-assoc zero p = refl
↑ˡ-assoc {suc s'} {n₁} {n₂} (suc f') p rewrite ↑ˡ-assoc f' (sym (+-assoc s' n₁ n₂)) = refl
↑ˡ-Edge-assoc : {s n₁ n₂} (e : Fin s × Fin s) (p : s +ⁿ (n₁ +ⁿ n₂) s +ⁿ n₁ +ⁿ n₂)
↑ˡ-Edge (↑ˡ-Edge e n₁) n₂ castᵉ p (↑ˡ-Edge e (n₁ +ⁿ n₂))
↑ˡ-Edge-assoc (idx₁ , idx₂) p
rewrite ↑ˡ-assoc idx₁ p
rewrite ↑ˡ-assoc idx₂ p = refl
↑ˡ-identityʳ : {s} (f : Fin s) (p : s +ⁿ 0 s)
f castᶠ p (f ↑ˡ 0)
↑ˡ-identityʳ zero p = refl
↑ˡ-identityʳ {suc s'} (suc f') p rewrite sym (↑ˡ-identityʳ f' (+-comm s' 0)) = refl
↑ˡ-Edge-identityʳ : {s} (e : Fin s × Fin s) (p : s +ⁿ 0 s)
e castᵉ p (↑ˡ-Edge e 0)
↑ˡ-Edge-identityʳ (idx₁ , idx₂) p
rewrite sym (↑ˡ-identityʳ idx₁ p)
rewrite sym (↑ˡ-identityʳ idx₂ p) = refl
cast∈⇒∈subst : {n m : } (p : n m) (q : m n)
(e : Fin n × Fin n) (es : List (Fin m × Fin m))
castᵉ p e ∈ˡ es
e ∈ˡ subst (λ m List (Fin m × Fin m)) q es
cast∈⇒∈subst refl refl (idx₁ , idx₂) es e∈es
rewrite castᶠ-is-id refl idx₁
rewrite castᶠ-is-id refl idx₂ = e∈es
⊆-trans : {g₁ g₂ g₃ : Graph} g₁ g₂ g₂ g₃ g₁ g₃
⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃}
(Mk-⊆ n₁ p₁@refl g₁[]≡g₂[] e∈g₁⇒e∈g₂) (Mk-⊆ n₂ p₂@refl g₂[]≡g₃[] e∈g₂⇒e∈g₃) = record
(Mk-⊆ n₁ p₁@refl newNodes₁ nsg₂≡nsg₁++newNodes₁ e∈g₁⇒e∈g₂)
(Mk-⊆ n₂ p₂@refl newNodes₂ nsg₃≡nsg₂++newNodes₂ e∈g₂⇒e∈g₃)
rewrite cast-is-id refl ns₂
rewrite cast-is-id refl ns₃
with refl nsg₂≡nsg₁++newNodes₁
with refl nsg₃≡nsg₂++newNodes₂ =
record
{ n = n₁ +ⁿ n₂
; sg₂≡sg₁+n = +-assoc s₁ n₁ n₂
; g₁[]≡g₂[] = λ idx
begin
lookup ns₁ idx
≡⟨ g₁[]≡g₂[] _
lookup (cast p₁ ns₂) (idx ↑ˡ n₁)
≡⟨ lookup-cast₁ p₁ ns₂ _
lookup ns₂ (castᶠ (sym p₁) (idx ↑ˡ n₁))
≡⟨ g₂[]≡g₃[] _
lookup (cast p₂ ns₃) ((castᶠ (sym p₁) (idx ↑ˡ n₁)) ↑ˡ n₂)
≡⟨ lookup-cast₁ p₂ _ _
lookup ns₃ (castᶠ (sym p₂) (((castᶠ (sym p₁) (idx ↑ˡ n₁)) ↑ˡ n₂)))
≡⟨ cong (lookup ns₃) (↑ˡ-assoc (sym p₂) (sym p₁) (sym (+-assoc s₁ n₁ n₂)) idx)
lookup ns₃ (castᶠ (sym (+-assoc s₁ n₁ n₂)) (idx ↑ˡ (n₁ +ⁿ n₂)))
≡⟨ sym (lookup-cast₁ (+-assoc s₁ n₁ n₂) _ _)
lookup (cast (+-assoc s₁ n₁ n₂) ns₃) (idx ↑ˡ (n₁ +ⁿ n₂))
; e∈g₁⇒e∈g₂ = {!!} -- λ e∈g₁ → e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁)
; newNodes = newNodes₁ ++ newNodes₂
; nsg₂≡nsg₁++newNodes = ++-assoc (+-assoc s₁ n₁ n₂) ns₁ newNodes₁ newNodes₂
; e∈g₁⇒e∈g₂ = λ {e} e∈g₁
cast∈⇒∈subst (sym (+-assoc s₁ n₁ n₂)) (+-assoc s₁ n₁ n₂) _ _
(subst (λ e' e' ∈ˡ es₃)
(↑ˡ-Edge-assoc e (sym (+-assoc s₁ n₁ n₂)))
(e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁)))
}
where
↑ˡ-assoc : {s₁ s₂ s₃ n₁ n₂ : }
(p : s₂ +ⁿ n₂ s₃) (q : s₁ +ⁿ n₁ s₂)
(r : s₁ +ⁿ (n₁ +ⁿ n₂) s₃)
(idx : Fin s₁)
castᶠ p ((castᶠ q (idx ↑ˡ n₁)) ↑ˡ n₂) castᶠ r (idx ↑ˡ (n₁ +ⁿ n₂))
↑ˡ-assoc refl refl r zero = refl
↑ˡ-assoc {(suc s₁)} {s₂} {s₃} {n₁} {n₂} refl refl r (suc idx')
rewrite ↑ˡ-assoc refl refl (sym (+-assoc s₁ n₁ n₂)) idx' = refl
record Relaxable (T : Graph Set) : Set where
field relax : {g₁ g₂ : Graph} g₁ g₂ T g₁ T g₂
@ -160,7 +190,7 @@ module Graphs where
instance
IndexRelaxable : Relaxable Graph.Index
IndexRelaxable = record
{ relax = λ { (Mk-⊆ n refl _ _) idx idx ↑ˡ n }
{ relax = λ { (Mk-⊆ n refl _ _ _) idx idx ↑ˡ n }
}
EdgeRelaxable : Relaxable Graph.Edge
@ -185,13 +215,20 @@ module Graphs where
relax-preserves-[]≡ : (g₁ g₂ : Graph) (g₁⊆g₂ : g₁ g₂) (idx : Graph.Index g₁)
g₁ [ idx ] g₂ [ relax g₁⊆g₂ idx ]
relax-preserves-[]≡ g₁ g₂ (Mk-⊆ n refl g₁[]≡g₂[] _) idx =
trans (g₁[]≡g₂[] idx) (cong (λ vec lookup vec (idx ↑ˡ n))
(cast-is-id refl (Graph.nodes g₂)))
relax-preserves-[]≡ g₁ g₂ (Mk-⊆ n refl newNodes nsg₂≡nsg₁++newNodes _) idx
rewrite cast-is-id refl (Graph.nodes g₂)
with refl nsg₂≡nsg₁++newNodes = sym (lookup-++ˡ (Graph.nodes g₁) _ _)
-- Tools for graph construction. The most important is a 'monotonic function':
-- one that takes a graph, and produces another graph, such that the
-- new graph includes all the information from the old one.
MonotonicGraphFunction : (Graph Set) Set
MonotonicGraphFunction T = (g₁ : Graph) Σ Graph (λ g₂ T g₂ × g₁ g₂)
-- Now, define some operations on monotonic functions; these are useful
-- to save the work of threading intermediate graphs in and out of operations.
infixr 2 _⟨⊗⟩_
_⟨⊗⟩_ : {T₁ T₂ : Graph Set} {{ T₁Relaxable : Relaxable T₁ }}
MonotonicGraphFunction T₁ MonotonicGraphFunction T₂
@ -216,6 +253,47 @@ module Graphs where
MonotonicGraphFunction T₂
_map_ f fn g = let (g' , (t₁ , g⊆g')) = f g in (g' , (fn g' t₁ , g⊆g'))
-- To reason about monotonic functions and what we do, we need a way
-- to describe values they produce. A 'graph-value predicate' is
-- just a predicate for some (dependent) value.
GraphValuePredicate : (Graph Set) Set
GraphValuePredicate T = (g : Graph) T g Set
Both : {T₁ T₂ : Graph Set} GraphValuePredicate T₁ GraphValuePredicate T₂
GraphValuePredicate (T₁ T₂)
Both P Q = (λ { g (t₁ , t₂) (P g t₁ × Q g t₂) })
-- Since monotnic functions keep adding on to a function, proofs of
-- graph-value predicates go stale fast (they describe old values of
-- the graph). To keep propagating them through, we need them to still
-- on 'bigger graphs'. We call such predicates monotonic as well, since
-- they respect the ordering of graphs.
MonotonicPredicate : {T : Graph Set} {{ TRelaxable : Relaxable T }}
GraphValuePredicate T Set
MonotonicPredicate {T} P = (g₁ g₂ : Graph) (t₁ : T g₁) (g₁⊆g₂ : g₁ g₂)
P g₁ t₁ P g₂ (relax g₁⊆g₂ t₁)
-- A 'map' has a certain property if its ouputs satisfy that property
-- for all inputs.
always : {T : Graph Set} GraphValuePredicate T MonotonicGraphFunction T Set
always P m = g₁ let (g₂ , t , _) = m g₁ in P g₂ t
⟨⊗⟩-reason : {T₁ T₂ : Graph Set} {{ T₁Relaxable : Relaxable T₁ }}
{P : GraphValuePredicate T₁} {Q : GraphValuePredicate T₂}
{P-Mono : MonotonicPredicate P}
{m₁ : MonotonicGraphFunction T₁} {m₂ : MonotonicGraphFunction T₂}
always P m₁ always Q m₂ always (Both P Q) (m₁ ⟨⊗⟩ m₂)
⟨⊗⟩-reason {P-Mono = P-Mono} {m₁ = m₁} {m₂ = m₂} aP aQ g
with p aP g
with (g' , (t₁ , g⊆g')) m₁ g
with q aQ g'
with (g'' , (t₂ , g'⊆g'')) m₂ g' = (P-Mono _ _ _ g'⊆g'' p , q)
module Construction where
pushBasicBlock : List BasicStmt MonotonicGraphFunction Graph.Index
pushBasicBlock bss g =
@ -228,8 +306,9 @@ module Graphs where
, record
{ n = 1
; sg₂≡sg₁+n = refl
; g₁[]≡g₂[] = {!!} -- λ idx → trans (sym (lookup-++ˡ (Graph.nodes g) (bss ∷ []) idx)) (sym (cong (λ vec → lookup vec (idx ↑ˡ 1)) (cast-is-id refl (Graph.nodes g ++ (bss ∷ [])))))
; e∈g₁⇒e∈g₂ = λ e∈g₁ x∈xs⇒fx∈fxs (λ e' ↑ˡ-Edge e' 1) e∈g₁
; newNodes = (bss [])
; nsg₂≡nsg₁++newNodes = cast-is-id refl _
; e∈g₁⇒e∈g₂ = λ e∈g₁ x∈xs⇒fx∈fxs (λ e ↑ˡ-Edge e 1) e∈g₁
}
)
)
@ -244,23 +323,15 @@ module Graphs where
, record
{ n = 0
; sg₂≡sg₁+n = +-comm 0 s
; g₁[]≡g₂[] = λ idx
begin
lookup ns idx
≡⟨ cong (lookup ns) (↑ˡ-identityʳ (sym (+-comm 0 s)) idx)
lookup ns (castᶠ (sym (+-comm 0 s)) (idx ↑ˡ 0))
≡⟨ sym (lookup-cast₁ (+-comm 0 s) _ _)
lookup (cast (+-comm 0 s) ns) (idx ↑ˡ 0)
; e∈g₁⇒e∈g₂ = {!!}
; newNodes = []
; nsg₂≡nsg₁++newNodes = cast-sym _ (++-identityʳ (+-comm s 0) ns)
; e∈g₁⇒e∈g₂ = λ {e} e∈es
cast∈⇒∈subst (+-comm s 0) (+-comm 0 s) _ _
(subst (λ e' e' ∈ˡ _)
(↑ˡ-Edge-identityʳ e (+-comm s 0))
(∈ˡ-++⁺ʳ es' e∈es))
}
)
where
↑ˡ-identityʳ : {s} (p : s +ⁿ 0 s) (idx : Fin s)
idx castᶠ p (idx ↑ˡ 0)
↑ˡ-identityʳ p zero = refl
↑ˡ-identityʳ {suc s'} p (suc f')
rewrite sym (↑ˡ-identityʳ (+-comm s' 0) f') = refl
pushEmptyBlock : MonotonicGraphFunction Graph.Index
pushEmptyBlock = pushBasicBlock []
@ -410,7 +481,7 @@ private
z≢mapsfs (f fs') = z≢sf f z≢mapsfs fs'
indices : (n : ) Σ (List (Fin n)) Unique
indices 0 = ([] , empty)
indices 0 = ([] , empty)
indices (suc n') =
let
(inds' , unids') = indices n'
@ -423,54 +494,32 @@ private
indices-complete (suc n') zero = RelAny.here refl
indices-complete (suc n') (suc f') = RelAny.there (x∈xs⇒fx∈fxs suc (indices-complete n' f'))
-- Sketch, 'build control flow graph'
-- -- Create new block, mark it as the current insertion point.
-- emptyBlock : m Id
-- currentBlock : m Id
-- -- Create a new block, and insert the statement into it. Shold restore insertion pont.
-- createBlock : Stmt → m (Id × Id)
-- -- Note that the given ID is a successor / predecessor of the given
-- -- insertion point.
-- noteSuccessor : Id → m ()
-- notePredecessor : Id → m ()
-- noteEdge : Id → Id → m ()
-- -- Insert the given statment into the current insertion point.
-- buildCfg : Stmt → m Cfg
-- buildCfg { bs₁ } = push bs₁
-- buildCfg (s₁ ; s₂ ) = buildCfg s₁ >> buildCfg s₂
-- buildCfg (if _ then s₁ else s₂) = do
-- (b₁ , b₁') ← createBlock s₁
-- noteSuccessor b₁
-- (b₂ , b₂') ← createBlock s₂
-- noteSuccessor b₂
-- b ← emptyBlock
-- notePredecessor b₁'
-- notePredecessor b₂'
-- buildCfg (while e repeat s) = do
-- (b₁, b₁') ← createBlock s
-- noteSuccessor b₁
-- noteEdge b₁' b₁
-- b ← emptyBlock
-- notePredecessor b₁'
-- For now, just represent the program and CFG as one type, without branching.
record Program : Set where
open Graphs
field
length :
stmts : Vec Stmt length
rootStmt : Stmt
private
buildResult = Construction.buildCfg rootStmt empty
graph : Graph
graph = proj₁ buildResult
State : Set
State = Graph.Index graph
initialState : State
initialState = proj₁' (proj₁ (proj₂ buildResult))
finalState : State
finalState = proj₂' (proj₁ (proj₂ buildResult))
private
vars-Set : StringSet
vars-Set = Stmts-vars stmts
vars-Set = Stmt-vars rootStmt
vars : List String
vars = to-Listˢ vars-Set
@ -478,20 +527,17 @@ record Program : Set where
vars-Unique : Unique vars
vars-Unique = proj₂ vars-Set
State : Set
State = Fin length
states : List State
states = proj₁ (indices length)
states = proj₁ (indices (Graph.size graph))
states-complete : (s : State) s ∈ˡ states
states-complete = indices-complete length
states-complete = indices-complete (Graph.size graph)
states-Unique : Unique states
states-Unique = proj₂ (indices length)
states-Unique = proj₂ (indices (Graph.size graph))
code : State Stmt
code = lookup stmts
code : State List BasicStmt
code st = graph [ st ]
-- vars-complete : ∀ {k : String} (s : State) → k ∈ᵇ (code s) → k ∈ˡ vars
-- vars-complete {k} s = ∈⇒∈-Stmts-vars {length} {k} {stmts} {s}
@ -499,14 +545,10 @@ record Program : Set where
_≟_ : IsDecidable (_≡_ {_} {State})
_≟_ = _≟ᶠ_
-- Computations for incoming and outgoing edges will have to change too
-- when we support branching etc.
_≟ᵉ_ : IsDecidable (_≡_ {_} {Graph.Edge graph})
_≟ᵉ_ = ≡-dec _≟_ _≟_
open import Data.List.Membership.DecPropositional _≟ᵉ_ using () renaming (_∈?_ to _∈ˡ?_)
incoming : State List State
incoming
with length
... | 0 = (λ ())
... | suc n' = (λ
{ zero []
; (suc f') (inject₁ f') []
})
incoming idx = filterᶠ (λ idx' (idx' , idx) ∈ˡ? (Graph.edges graph)) states

View File

@ -150,6 +150,21 @@ module _ {a b} {A : Set a} {B : Set b}
≼₂-trans (f-Mono₁ (foldr f b₁ xs) x≼y)
(f-Mono₂ y (foldr-Mono xs ys f b₁ b₂ xs≼ys b₁≼b₂ f-Mono₁ f-Mono₂))
module _ {a b} {A : Set a} {B : Set b}
{_≈₂_ : B B Set b} {_⊔₂_ : B B B}
(lB : IsSemilattice B _≈₂_ _⊔₂_) where
open IsSemilattice lB using () renaming (_≼_ to _≼₂_; ⊔-idemp to ⊔₂-idemp; ≼-trans to ≼₂-trans)
open import Data.List as List using (List; foldr; _∷_)
open import Utils using (Pairwise; _∷_)
foldr-Mono' : (l : List A) (f : A B B)
( a Monotonic _≼₂_ _≼₂_ (f a))
Monotonic _≼₂_ _≼₂_ (λ b foldr f b l)
foldr-Mono' List.[] f _ b₁≼b₂ = b₁≼b₂
foldr-Mono' (x xs) f f-Mono₂ b₁≼b₂ = f-Mono₂ x (foldr-Mono' xs f f-Mono₂ b₁≼b₂)
record IsLattice {a} (A : Set a)
(_≈_ : A A Set a)
(_⊔_ : A A A)

View File

@ -6,18 +6,16 @@ open import Data.Vec using (Vec; _∷_; [])
open import IO
open import Level using (0)
testCode : Vec Stmt _
testCode : Stmt
testCode =
("zero" (# 0))
("pos" ((` "zero") Expr.+ (# 1)))
("neg" ((` "zero") Expr.- (# 1)))
("unknown" ((` "pos") Expr.+ (` "neg")))
[]
"zero" (# 0) then
"pos" ((` "zero") Expr.+ (# 1)) then
"neg" ((` "zero") Expr.- (# 1)) then
"unknown" ((` "pos") Expr.+ (` "neg"))
testProgram : Program
testProgram = record
{ length = _
; stmts = testCode
{ rootStmt = testCode
}
open WithProg testProgram using (output)

View File

@ -72,3 +72,9 @@ data Pairwise {a} {b} {c} {A : Set a} {B : Set b} (P : A → B → Set c) : List
infixr 2 _⊗_
data _⊗_ {a p q} {A : Set a} (P : A Set p) (Q : A Set q) : A Set (a ⊔ℓ p ⊔ℓ q) where
_,_ : {val : A} P val Q val (P Q) val
proj₁ : {a p q} {A : Set a} {P : A Set p} {Q : A Set q} {a : A} (P Q) a P a
proj₁ (v , _) = v
proj₂ : {a p q} {A : Set a} {P : A Set p} {Q : A Set q} {a : A} (P Q) a Q a
proj₂ (_ , v) = v