Compare commits

...

2 Commits

Author SHA1 Message Date
b505063771 Start working on proofs of Graph-related things
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-04 20:34:28 -07:00
844c99336a Intermediate commit: add while loops and start trying to formalize them. 2024-04-03 22:31:23 -07:00
2 changed files with 269 additions and 79 deletions

View File

@ -1,21 +1,23 @@
module Language where
open import Data.Nat using (; suc; pred)
open import Data.Nat using (; suc; pred; _≤_) renaming (_+_ to _+ⁿ_)
open import Data.Nat.Properties using (m≤n⇒m≤n+o; ≤-reflexive)
open import Data.Integer using (; +_) renaming (_+_ to _+ᶻ_; _-_ to _-ᶻ_)
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
open import Data.Product using (Σ; _,_; proj₁; proj₂)
open import Data.Vec using (Vec; foldr; lookup; _∷_)
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
open import Data.Vec using (Vec; foldr; lookup; _∷_; []; _++_)
open import Data.List using ([]; _∷_; List) renaming (foldr to foldrˡ; map to mapˡ)
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Data.List.Relation.Unary.Any as RelAny using ()
open import Data.Fin using (Fin; suc; zero; from; inject₁) renaming (_≟_ to _≟ᶠ_)
open import Data.Fin using (Fin; suc; zero; from; inject₁; inject≤; _↑ʳ_) renaming (_≟_ to _≟ᶠ_)
open import Data.Fin.Properties using (suc-injective)
open import Relation.Binary.PropositionalEquality using (cong; _≡_; refl)
open import Relation.Binary.PropositionalEquality using (subst; cong; _≡_; refl)
open import Relation.Nullary using (¬_)
open import Function using (_∘_)
open import Lattice
open import Utils using (Unique; Unique-map; empty; push; x∈xs⇒fx∈fxs)
open import Utils using (Unique; Unique-map; empty; push; x∈xs⇒fx∈fxs; _⊗_; _,_)
data Expr : Set where
_+_ : Expr Expr Expr
@ -23,8 +25,148 @@ data Expr : Set where
`_ : String Expr
#_ : Expr
data BasicStmt : Set where
_←_ : String Expr BasicStmt
noop : BasicStmt
data Stmt : Set where
_←_ : String Expr Stmt
⟨_⟩ : BasicStmt Stmt
_then_ : Stmt Stmt Stmt
if_then_else_ : Expr Stmt Stmt Stmt
while_repeat_ : Expr Stmt Stmt
module Semantics where
data Value : Set where
↑ᶻ : Value
Env : Set
Env = List (String × Value)
data _∈_ : (String × Value) Env Set where
here : (s : String) (v : Value) (ρ : Env) (s , v) ((s , v) ρ)
there : (s s' : String) (v v' : Value) (ρ : Env) ¬ (s s') (s , v) ρ (s , v) ((s' , v') ρ)
data _,_⇒ᵉ_ : Env Expr Value Set where
⇒ᵉ- : (ρ : Env) (n : ) ρ , (# n) ⇒ᵉ (↑ᶻ (+ n))
⇒ᵉ-Var : (ρ : Env) (x : String) (v : Value) (x , v) ρ ρ , (` x) ⇒ᵉ v
⇒ᵉ-+ : (ρ : Env) (e₁ e₂ : Expr) (z₁ z₂ : )
ρ , e₁ ⇒ᵉ (↑ᶻ z₁) ρ , e₂ ⇒ᵉ (↑ᶻ z₂)
ρ , (e₁ + e₂) ⇒ᵉ (↑ᶻ (z₁ +ᶻ z₂))
⇒ᵉ-- : (ρ : Env) (e₁ e₂ : Expr) (z₁ z₂ : )
ρ , e₁ ⇒ᵉ (↑ᶻ z₁) ρ , e₂ ⇒ᵉ (↑ᶻ z₂)
ρ , (e₁ - e₂) ⇒ᵉ (↑ᶻ (z₁ -ᶻ z₂))
data _,_⇒ᵇ_ : Env BasicStmt Env Set where
⇒ᵇ-noop : (ρ : Env) ρ , noop ⇒ᵇ ρ
⇒ᵇ-← : (ρ : Env) (x : String) (e : Expr) (v : Value)
ρ , e ⇒ᵉ v ρ , (x e) ⇒ᵇ ((x , v) ρ)
data _,_⇒ˢ_ : Env Stmt Env Set where
⇒ˢ-⟨⟩ : (ρ₁ ρ₂ : Env) (bs : BasicStmt)
ρ₁ , bs ⇒ᵇ ρ₂ ρ₁ , bs ⇒ˢ ρ₂
⇒ˢ-then : (ρ₁ ρ₂ ρ₃ : Env) (s₁ s₂ : Stmt)
ρ₁ , s₁ ⇒ˢ ρ₂ ρ₂ , s₂ ⇒ˢ ρ₃
ρ₁ , (s₁ then s₂) ⇒ˢ ρ₃
⇒ˢ-if-true : (ρ₁ ρ₂ : Env) (e : Expr) (z : ) (s₁ s₂ : Stmt)
ρ₁ , e ⇒ᵉ (↑ᶻ z) ¬ z (+ 0) ρ₁ , s₁ ⇒ˢ ρ₂
ρ₁ , (if e then s₁ else s₂) ⇒ˢ ρ₂
⇒ˢ-if-false : (ρ₁ ρ₂ : Env) (e : Expr) (s₁ s₂ : Stmt)
ρ₁ , e ⇒ᵉ (↑ᶻ (+ 0)) ρ₁ , s₂ ⇒ˢ ρ₂
ρ₁ , (if e then s₁ else s₂) ⇒ˢ ρ₂
⇒ˢ-while-true : (ρ₁ ρ₂ ρ₃ : Env) (e : Expr) (z : ) (s : Stmt)
ρ₁ , e ⇒ᵉ (↑ᶻ z) ¬ z (+ 0) ρ₁ , s ⇒ˢ ρ₂ ρ₂ , (while e repeat s) ⇒ˢ ρ₃
ρ₁ , (while e repeat s) ⇒ˢ ρ₃
⇒ˢ-while-false : (ρ : Env) (e : Expr) (s : Stmt)
ρ , e ⇒ᵉ (↑ᶻ (+ 0))
ρ , (while e repeat s) ⇒ˢ ρ
module Graphs where
open Semantics
record Graph : Set where
field
size :
Index : Set
Index = Fin size
Edge : Set
Edge = Index × Index
field
nodes : Vec (List BasicStmt) size
edges : List Edge
_[_] : (g : Graph) Graph.Index g List BasicStmt
_[_] g idx = lookup (Graph.nodes g) idx
_⊆_ : Graph Graph Set
_⊆_ g₁ g₂ =
Σ (Graph.size g₁ Graph.size g₂) (λ n₁≤n₂
( (idx : Graph.Index g₁) g₁ [ idx ] g₂ [ inject≤ idx n₁≤n₂ ]
× (idx₁ idx₂ : Graph.Index g₁) (idx₁ , idx₂) ∈ˡ (Graph.edges g₁)
(inject≤ idx₁ n₁≤n₂ , inject≤ idx₂ n₁≤n₂) ∈ˡ (Graph.edges g₂)
))
-- Note: inject≤ doesn't seem to work as nicely with vector lookups.
-- The ↑ˡ and ↑ʳ operators are way nicer. Can we reformulate the
-- ⊆ property to use them?
n≤n+m : (n m : ) n n +ⁿ m
n≤n+m n m = m≤n⇒m≤n+o m (≤-reflexive (refl {x = n}))
lookup-++ˡ : {a} {A : Set a} {n m : } (xs : Vec A n) (ys : Vec A m)
(idx : Fin n) lookup xs idx lookup (xs ++ ys) (inject≤ idx (n≤n+m n m))
lookup-++ˡ = {!!}
pushBasicBlock : List BasicStmt (g₁ : Graph) Σ Graph (λ g₂ Graph.Index g₂ × g₁ g₂)
pushBasicBlock bss g₁ =
let
size' = Graph.size g₁ +ⁿ 1
size≤size' = n≤n+m (Graph.size g₁) 1
inject-Edge = λ (idx₁ , idx₂) (inject≤ idx₁ size≤size' , inject≤ idx₂ size≤size')
in
( record
{ size = size'
; nodes = Graph.nodes g₁ ++ (bss [])
; edges = mapˡ inject-Edge (Graph.edges g₁)
}
, ( (Graph.size g₁) ↑ʳ zero
, ( size≤size'
, λ idx lookup-++ˡ (Graph.nodes g₁) (bss []) idx
, λ idx₁ idx₂ e∈es x∈xs⇒fx∈fxs inject-Edge e∈es
)
)
)
record Relaxable (T : Graph Set) : Set where
field relax : {g₁ g₂ : Graph} g₁ g₂ T g₁ T g₂
instance
IndexRelaxable : Relaxable Graph.Index
IndexRelaxable = record
{ relax = λ g₁⊆g₂ idx inject≤ idx (proj₁ g₁⊆g₂)
}
EdgeRelaxable : Relaxable Graph.Edge
EdgeRelaxable = record
{ relax = λ {g₁} {g₂} g₁⊆g₂ (idx₁ , idx₂)
( Relaxable.relax IndexRelaxable {g₁} {g₂} g₁⊆g₂ idx₁
, Relaxable.relax IndexRelaxable {g₁} {g₂} g₁⊆g₂ idx₂
)
}
ProdRelaxable : {P : Graph Set} {Q : Graph Set}
{{ PRelaxable : Relaxable P }} {{ QRelaxable : Relaxable Q }}
Relaxable (P Q)
ProdRelaxable {{pr}} {{qr}} = record
{ relax = (λ { g₁⊆g₂ (p , q)
( Relaxable.relax pr g₁⊆g₂ p
, Relaxable.relax qr g₁⊆g₂ q) }
)
}
open Relaxable {{...}} public
open import Lattice.MapSet _≟ˢ_
renaming
@ -47,9 +189,9 @@ data _∈ᵉ_ : String → Expr → Set where
in⁻₂ : {e₁ e₂ : Expr} {k : String} k ∈ᵉ e₂ k ∈ᵉ (e₁ - e₂)
here : {k : String} k ∈ᵉ (` k)
data _∈_ : String Stmt Set where
in←₁ : {k : String} {e : Expr} k (k e)
in←₂ : {k k' : String} {e : Expr} k ∈ᵉ e k (k' e)
data _∈_ : String BasicStmt Set where
in←₁ : {k : String} {e : Expr} k (k e)
in←₂ : {k k' : String} {e : Expr} k ∈ᵉ e k (k' e)
private
Expr-vars : Expr StringSet
@ -58,84 +200,91 @@ private
Expr-vars (` s) = singletonˢ s
Expr-vars (# _) = emptyˢ
∈-Expr-vars⇒∈ : {k : String} (e : Expr) k ∈ˢ (Expr-vars e) k ∈ᵉ e
∈-Expr-vars⇒∈ {k} (e₁ + e₂) k∈vs
with Expr-Provenance k (( (Expr-vars e₁)) ( (Expr-vars e₂))) k∈vs
... | in (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
... | in _ (single k,tt∈vs₂) = (in⁺₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
... | bothᵘ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
∈-Expr-vars⇒∈ {k} (e₁ - e₂) k∈vs
with Expr-Provenance k (( (Expr-vars e₁)) ( (Expr-vars e₂))) k∈vs
... | in (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
... | in _ (single k,tt∈vs₂) = (in⁻₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
... | bothᵘ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
∈-Expr-vars⇒∈ {k} (` k) (RelAny.here refl) = here
-- ∈-Expr-vars⇒∈ : ∀ {k : String} (e : Expr) → k ∈ˢ (Expr-vars e) → k ∈ᵉ e
-- ∈-Expr-vars⇒∈ {k} (e₁ + e₂) k∈vs
-- with Expr-Provenance k ((`ˢ (Expr-vars e₁)) (`ˢ (Expr-vars e₂))) k∈vs
-- ... | in₁ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
-- ... | in₂ _ (single k,tt∈vs₂) = (in⁺₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
-- ... | bothᵘ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
-- ∈-Expr-vars⇒∈ {k} (e₁ - e₂) k∈vs
-- with Expr-Provenance k ((`ˢ (Expr-vars e₁)) (`ˢ (Expr-vars e₂))) k∈vs
-- ... | in₁ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
-- ... | in₂ _ (single k,tt∈vs₂) = (in⁻₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
-- ... | bothᵘ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
-- ∈-Expr-vars⇒∈ {k} (` k) (RelAny.here refl) = here
∈⇒∈-Expr-vars : {k : String} {e : Expr} k ∈ᵉ e k ∈ˢ (Expr-vars e)
∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₁ k∈e₁) =
⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
{m₂ = Expr-vars e₂}
(∈⇒∈-Expr-vars k∈e₁)
∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₂ k∈e₂) =
⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
{m₂ = Expr-vars e₂}
(∈⇒∈-Expr-vars k∈e₂)
∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₁ k∈e₁) =
⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
{m₂ = Expr-vars e₂}
(∈⇒∈-Expr-vars k∈e₁)
∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₂ k∈e₂) =
⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
{m₂ = Expr-vars e₂}
(∈⇒∈-Expr-vars k∈e₂)
∈⇒∈-Expr-vars here = RelAny.here refl
-- ∈⇒∈-Expr-vars : ∀ {k : String} {e : Expr} → k ∈ᵉ e → k ∈ˢ (Expr-vars e)
-- ∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₁ k∈e₁) =
-- ⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
-- {m₂ = Expr-vars e₂}
-- (∈⇒∈-Expr-vars k∈e₁)
-- ∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₂ k∈e₂) =
-- ⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
-- {m₂ = Expr-vars e₂}
-- (∈⇒∈-Expr-vars k∈e₂)
-- ∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₁ k∈e₁) =
-- ⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
-- {m₂ = Expr-vars e₂}
-- (∈⇒∈-Expr-vars k∈e₁)
-- ∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₂ k∈e₂) =
-- ⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
-- {m₂ = Expr-vars e₂}
-- (∈⇒∈-Expr-vars k∈e₂)
-- ∈⇒∈-Expr-vars here = RelAny.here refl
BasicStmt-vars : BasicStmt StringSet
BasicStmt-vars (x e) = (singletonˢ x) ⊔ˢ (Expr-vars e)
BasicStmt-vars noop = emptyˢ
Stmt-vars : Stmt StringSet
Stmt-vars (x e) = (singletonˢ x) ⊔ˢ (Expr-vars e)
Stmt-vars bs = BasicStmt-vars bs
Stmt-vars (s₁ then s₂) = (Stmt-vars s₁) ⊔ˢ (Stmt-vars s₂)
Stmt-vars (if e then s₁ else s₂) = ((Expr-vars e) ⊔ˢ (Stmt-vars s₁)) ⊔ˢ (Stmt-vars s₂)
Stmt-vars (while e repeat s) = (Expr-vars e) ⊔ˢ (Stmt-vars s)
∈-Stmt-vars⇒∈ : {k : String} (s : Stmt) k ∈ˢ (Stmt-vars s) k ∈ᵗ s
∈-Stmt-vars⇒∈ {k} (k' e) k∈vs
with Expr-Provenance k (( (singletonˢ k')) ( (Expr-vars e))) k∈vs
... | in (single (RelAny.here refl)) _ = in←₁
... | in _ (single k,tt∈vs') = in←₂ (∈-Expr-vars⇒∈ e (forget k,tt∈vs'))
... | bothᵘ (single (RelAny.here refl)) _ = in←₁
-- ∈-Stmt-vars⇒∈ : ∀ {k : String} (s : Stmt) → k ∈ˢ (Stmt-vars s) → k ∈ᵇ s
-- ∈-Stmt-vars⇒∈ {k} (k' ← e) k∈vs
-- with Expr-Provenance k ((`ˢ (singletonˢ k')) (`ˢ (Expr-vars e))) k∈vs
-- ... | in₁ (single (RelAny.here refl)) _ = in←₁
-- ... | in₂ _ (single k,tt∈vs') = in←₂ (∈-Expr-vars⇒∈ e (forget k,tt∈vs'))
-- ... | bothᵘ (single (RelAny.here refl)) _ = in←₁
∈⇒∈-Stmt-vars : {k : String} {s : Stmt} k ∈ᵗ s k ∈ˢ (Stmt-vars s)
∈⇒∈-Stmt-vars {k} {k e} in←₁ =
⊔ˢ-preserves-∈k₁ {m₁ = singletonˢ k}
{m₂ = Expr-vars e}
(RelAny.here refl)
∈⇒∈-Stmt-vars {k} {k' e} (in←₂ k∈e) =
⊔ˢ-preserves-∈k₂ {m₁ = singletonˢ k'}
{m₂ = Expr-vars e}
(∈⇒∈-Expr-vars k∈e)
-- ∈⇒∈-Stmt-vars : ∀ {k : String} {s : Stmt} → k ∈ᵇ s → k ∈ˢ (Stmt-vars s)
-- ∈⇒∈-Stmt-vars {k} {k ← e} in←₁ =
-- ⊔ˢ-preserves-∈k₁ {m₁ = singletonˢ k}
-- {m₂ = Expr-vars e}
-- (RelAny.here refl)
-- ∈⇒∈-Stmt-vars {k} {k' ← e} (in←₂ k∈e) =
-- ⊔ˢ-preserves-∈k₂ {m₁ = singletonˢ k'}
-- {m₂ = Expr-vars e}
-- (∈⇒∈-Expr-vars k∈e)
Stmts-vars : {n : } Vec Stmt n StringSet
Stmts-vars = foldr (λ n StringSet)
(λ {k} stmt acc (Stmt-vars stmt) ⊔ˢ acc) emptyˢ
∈-Stmts-vars⇒∈ : {n : } {k : String} (ss : Vec Stmt n)
k ∈ˢ (Stmts-vars ss) Σ (Fin n) (λ f k ∈ᵗ lookup ss f)
∈-Stmts-vars⇒∈ {suc n'} {k} (s ss') k∈vss
with Expr-Provenance k (( (Stmt-vars s)) ( (Stmts-vars ss'))) k∈vss
... | in (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
... | in _ (single k,tt∈vss') =
let
(f' , k∈s') = ∈-Stmts-vars⇒∈ ss' (forget k,tt∈vss')
in
(suc f' , k∈s')
... | bothᵘ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
-- ∈-Stmts-vars⇒∈ : ∀ {n : } {k : String} (ss : Vec Stmt n)
-- k ∈ˢ (Stmts-vars ss) → Σ (Fin n) (λ f → k ∈ᵇ lookup ss f)
-- ∈-Stmts-vars⇒∈ {suc n'} {k} (s ∷ ss') k∈vss
-- with Expr-Provenance k ((`ˢ (Stmt-vars s)) (`ˢ (Stmts-vars ss'))) k∈vss
-- ... | in₁ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
-- ... | in₂ _ (single k,tt∈vss') =
-- let
-- (f' , k∈s') = ∈-Stmts-vars⇒∈ ss' (forget k,tt∈vss')
-- in
-- (suc f' , k∈s')
-- ... | bothᵘ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
∈⇒∈-Stmts-vars : {n : } {k : String} {ss : Vec Stmt n} {f : Fin n}
k ∈ᵗ lookup ss f k ∈ˢ (Stmts-vars ss)
∈⇒∈-Stmts-vars {suc n} {k} {s ss'} {zero} k∈s =
⊔ˢ-preserves-∈k₁ {m₁ = Stmt-vars s}
{m₂ = Stmts-vars ss'}
(∈⇒∈-Stmt-vars k∈s)
∈⇒∈-Stmts-vars {suc n} {k} {s ss'} {suc f'} k∈ss' =
⊔ˢ-preserves-∈k₂ {m₁ = Stmt-vars s}
{m₂ = Stmts-vars ss'}
(∈⇒∈-Stmts-vars {n} {k} {ss'} {f'} k∈ss')
-- ∈⇒∈-Stmts-vars : ∀ {n : } {k : String} {ss : Vec Stmt n} {f : Fin n}
-- k ∈ᵇ lookup ss f → k ∈ˢ (Stmts-vars ss)
-- ∈⇒∈-Stmts-vars {suc n} {k} {s ∷ ss'} {zero} k∈s =
-- ⊔ˢ-preserves-∈k₁ {m₁ = Stmt-vars s}
-- {m₂ = Stmts-vars ss'}
-- (∈⇒∈-Stmt-vars k∈s)
-- ∈⇒∈-Stmts-vars {suc n} {k} {s ∷ ss'} {suc f'} k∈ss' =
-- ⊔ˢ-preserves-∈k₂ {m₁ = Stmt-vars s}
-- {m₂ = Stmts-vars ss'}
-- (∈⇒∈-Stmts-vars {n} {k} {ss'} {f'} k∈ss')
-- Creating a new number from a natural number can never create one
-- equal to one you get from weakening the bounds on another number.
@ -160,6 +309,44 @@ private
indices-complete (suc n') zero = RelAny.here refl
indices-complete (suc n') (suc f') = RelAny.there (x∈xs⇒fx∈fxs suc (indices-complete n' f'))
-- Sketch, 'build control flow graph'
-- -- Create new block, mark it as the current insertion point.
-- emptyBlock : m Id
-- currentBlock : m Id
-- -- Create a new block, and insert the statement into it. Shold restore insertion pont.
-- createBlock : Stmt → m (Id × Id)
-- -- Note that the given ID is a successor / predecessor of the given
-- -- insertion point.
-- noteSuccessor : Id → m ()
-- notePredecessor : Id → m ()
-- noteEdge : Id → Id → m ()
-- -- Insert the given statment into the current insertion point.
-- buildCfg : Stmt → m Cfg
-- buildCfg { bs₁ } = push bs₁
-- buildCfg (s₁ ; s₂ ) = buildCfg s₁ >> buildCfg s₂
-- buildCfg (if _ then s₁ else s₂) = do
-- (b₁ , b₁') ← createBlock s₁
-- noteSuccessor b₁
-- (b₂ , b₂') ← createBlock s₂
-- noteSuccessor b₂
-- b ← emptyBlock
-- notePredecessor b₁'
-- notePredecessor b₂'
-- buildCfg (while e repeat s) = do
-- (b₁, b₁') ← createBlock s
-- noteSuccessor b₁
-- noteEdge b₁' b₁
-- b ← emptyBlock
-- notePredecessor b₁'
-- For now, just represent the program and CFG as one type, without branching.
record Program : Set where
@ -192,8 +379,8 @@ record Program : Set where
code : State Stmt
code = lookup stmts
vars-complete : {k : String} (s : State) k ∈ᵗ (code s) k ∈ˡ vars
vars-complete {k} s = ∈⇒∈-Stmts-vars {length} {k} {stmts} {s}
-- vars-complete : ∀ {k : String} (s : State) → k ∈ᵇ (code s) → k ∈ˡ vars
-- vars-complete {k} s = ∈⇒∈-Stmts-vars {length} {k} {stmts} {s}
_≟_ : IsDecidable (_≡_ {_} {State})
_≟_ = _≟ᶠ_

View File

@ -68,3 +68,6 @@ data Pairwise {a} {b} {c} {A : Set a} {B : Set b} (P : A → B → Set c) : List
_∷_ : {x : A} {y : B} {xs : List A} {ys : List B}
P x y Pairwise P xs ys
Pairwise P (x xs) (y ys)
data _⊗_ {a p q} {A : Set a} (P : A Set p) (Q : A Set q) : A Set (a ⊔ℓ p ⊔ℓ q) where
_,_ : {val : A} P val Q val (P Q) val