Compare commits
2 Commits
85fdf544b9
...
3e2719d45f
Author | SHA1 | Date | |
---|---|---|---|
3e2719d45f | |||
78252b6c9e |
|
@ -117,7 +117,7 @@ module Graphs where
|
||||||
g₁[]≡g₂[] : ∀ (idx : Graph.Index g₁) →
|
g₁[]≡g₂[] : ∀ (idx : Graph.Index g₁) →
|
||||||
lookup (Graph.nodes g₁) idx ≡
|
lookup (Graph.nodes g₁) idx ≡
|
||||||
lookup (cast sg₂≡sg₁+n (Graph.nodes g₂)) (idx ↑ˡ n)
|
lookup (cast sg₂≡sg₁+n (Graph.nodes g₂)) (idx ↑ˡ n)
|
||||||
e∈g₁⇒e∈g₂ : ∀ (e : Graph.Edge g₁) →
|
e∈g₁⇒e∈g₂ : ∀ {e : Graph.Edge g₁} →
|
||||||
e ∈ˡ (Graph.edges g₁) →
|
e ∈ˡ (Graph.edges g₁) →
|
||||||
(↑ˡ-Edge e n) ∈ˡ (subst (λ m → List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
|
(↑ˡ-Edge e n) ∈ˡ (subst (λ m → List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
|
||||||
|
|
||||||
|
@ -137,23 +137,22 @@ module Graphs where
|
||||||
lookup (cast p₂ ns₃) ((castᶠ (sym p₁) (idx ↑ˡ n₁)) ↑ˡ n₂)
|
lookup (cast p₂ ns₃) ((castᶠ (sym p₁) (idx ↑ˡ n₁)) ↑ˡ n₂)
|
||||||
≡⟨ lookup-cast₁ p₂ _ _ ⟩
|
≡⟨ lookup-cast₁ p₂ _ _ ⟩
|
||||||
lookup ns₃ (castᶠ (sym p₂) (((castᶠ (sym p₁) (idx ↑ˡ n₁)) ↑ˡ n₂)))
|
lookup ns₃ (castᶠ (sym p₂) (((castᶠ (sym p₁) (idx ↑ˡ n₁)) ↑ˡ n₂)))
|
||||||
≡⟨ cong (lookup ns₃) (flatten-casts (sym p₂) (sym p₁) (sym (+-assoc s₁ n₁ n₂)) idx) ⟩
|
≡⟨ cong (lookup ns₃) (↑ˡ-assoc (sym p₂) (sym p₁) (sym (+-assoc s₁ n₁ n₂)) idx) ⟩
|
||||||
lookup ns₃ (castᶠ (sym (+-assoc s₁ n₁ n₂)) (idx ↑ˡ (n₁ +ⁿ n₂)))
|
lookup ns₃ (castᶠ (sym (+-assoc s₁ n₁ n₂)) (idx ↑ˡ (n₁ +ⁿ n₂)))
|
||||||
≡⟨ sym (lookup-cast₁ (+-assoc s₁ n₁ n₂) _ _) ⟩
|
≡⟨ sym (lookup-cast₁ (+-assoc s₁ n₁ n₂) _ _) ⟩
|
||||||
lookup (cast (+-assoc s₁ n₁ n₂) ns₃) (idx ↑ˡ (n₁ +ⁿ n₂))
|
lookup (cast (+-assoc s₁ n₁ n₂) ns₃) (idx ↑ˡ (n₁ +ⁿ n₂))
|
||||||
∎
|
∎
|
||||||
; e∈g₁⇒e∈g₂ = {!!}
|
; e∈g₁⇒e∈g₂ = {!!} -- λ e∈g₁ → e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁)
|
||||||
}
|
}
|
||||||
where
|
where
|
||||||
flatten-casts : ∀ {s₁ s₂ s₃ n₁ n₂ : ℕ}
|
↑ˡ-assoc : ∀ {s₁ s₂ s₃ n₁ n₂ : ℕ}
|
||||||
(p : s₂ +ⁿ n₂ ≡ s₃) (q : s₁ +ⁿ n₁ ≡ s₂)
|
(p : s₂ +ⁿ n₂ ≡ s₃) (q : s₁ +ⁿ n₁ ≡ s₂)
|
||||||
(r : s₁ +ⁿ (n₁ +ⁿ n₂) ≡ s₃)
|
(r : s₁ +ⁿ (n₁ +ⁿ n₂) ≡ s₃)
|
||||||
(idx : Fin s₁) →
|
(idx : Fin s₁) →
|
||||||
castᶠ p ((castᶠ q (idx ↑ˡ n₁)) ↑ˡ n₂) ≡ castᶠ r (idx ↑ˡ (n₁ +ⁿ n₂))
|
castᶠ p ((castᶠ q (idx ↑ˡ n₁)) ↑ˡ n₂) ≡ castᶠ r (idx ↑ˡ (n₁ +ⁿ n₂))
|
||||||
flatten-casts refl refl r zero = refl
|
↑ˡ-assoc refl refl r zero = refl
|
||||||
flatten-casts {(suc s₁)} {s₂} {s₃} {n₁} {n₂} refl refl r (suc idx')
|
↑ˡ-assoc {(suc s₁)} {s₂} {s₃} {n₁} {n₂} refl refl r (suc idx')
|
||||||
rewrite flatten-casts refl refl (sym (+-assoc s₁ n₁ n₂)) idx' = refl
|
rewrite ↑ˡ-assoc refl refl (sym (+-assoc s₁ n₁ n₂)) idx' = refl
|
||||||
|
|
||||||
|
|
||||||
record Relaxable (T : Graph → Set) : Set where
|
record Relaxable (T : Graph → Set) : Set where
|
||||||
field relax : ∀ {g₁ g₂ : Graph} → g₁ ⊆ g₂ → T g₁ → T g₂
|
field relax : ∀ {g₁ g₂ : Graph} → g₁ ⊆ g₂ → T g₁ → T g₂
|
||||||
|
@ -229,26 +228,39 @@ module Graphs where
|
||||||
, record
|
, record
|
||||||
{ n = 1
|
{ n = 1
|
||||||
; sg₂≡sg₁+n = refl
|
; sg₂≡sg₁+n = refl
|
||||||
; g₁[]≡g₂[] = λ idx → trans (sym (lookup-++ˡ (Graph.nodes g) (bss ∷ []) idx)) (sym (cong (λ vec → lookup vec (idx ↑ˡ 1)) (cast-is-id refl (Graph.nodes g ++ (bss ∷ [])))))
|
; g₁[]≡g₂[] = {!!} -- λ idx → trans (sym (lookup-++ˡ (Graph.nodes g) (bss ∷ []) idx)) (sym (cong (λ vec → lookup vec (idx ↑ˡ 1)) (cast-is-id refl (Graph.nodes g ++ (bss ∷ [])))))
|
||||||
; e∈g₁⇒e∈g₂ = λ e e∈g₁ → x∈xs⇒fx∈fxs (λ e' → ↑ˡ-Edge e' 1) e∈g₁
|
; e∈g₁⇒e∈g₂ = λ e∈g₁ → x∈xs⇒fx∈fxs (λ e' → ↑ˡ-Edge e' 1) e∈g₁
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
addEdges : ∀ (g : Graph) → List (Graph.Edge g) → Σ Graph (λ g' → g ⊆ g')
|
addEdges : ∀ (g : Graph) → List (Graph.Edge g) → Σ Graph (λ g' → g ⊆ g')
|
||||||
addEdges g es =
|
addEdges (MkGraph s ns es) es' =
|
||||||
( record
|
( record
|
||||||
{ size = Graph.size g
|
{ size = s
|
||||||
; nodes = Graph.nodes g
|
; nodes = ns
|
||||||
; edges = es ++ˡ Graph.edges g
|
; edges = es' ++ˡ es
|
||||||
}
|
}
|
||||||
, record
|
, record
|
||||||
{ n = 0
|
{ n = 0
|
||||||
; sg₂≡sg₁+n = +-comm 0 (Graph.size g)
|
; sg₂≡sg₁+n = +-comm 0 s
|
||||||
; g₁[]≡g₂[] = {!!}
|
; g₁[]≡g₂[] = λ idx →
|
||||||
|
begin
|
||||||
|
lookup ns idx
|
||||||
|
≡⟨ cong (lookup ns) (↑ˡ-identityʳ (sym (+-comm 0 s)) idx) ⟩
|
||||||
|
lookup ns (castᶠ (sym (+-comm 0 s)) (idx ↑ˡ 0))
|
||||||
|
≡⟨ sym (lookup-cast₁ (+-comm 0 s) _ _) ⟩
|
||||||
|
lookup (cast (+-comm 0 s) ns) (idx ↑ˡ 0)
|
||||||
|
∎
|
||||||
; e∈g₁⇒e∈g₂ = {!!}
|
; e∈g₁⇒e∈g₂ = {!!}
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
where
|
||||||
|
↑ˡ-identityʳ : ∀ {s} (p : s +ⁿ 0 ≡ s) (idx : Fin s) →
|
||||||
|
idx ≡ castᶠ p (idx ↑ˡ 0)
|
||||||
|
↑ˡ-identityʳ p zero = refl
|
||||||
|
↑ˡ-identityʳ {suc s'} p (suc f')
|
||||||
|
rewrite sym (↑ˡ-identityʳ (+-comm s' 0) f') = refl
|
||||||
|
|
||||||
pushEmptyBlock : MonotonicGraphFunction Graph.Index
|
pushEmptyBlock : MonotonicGraphFunction Graph.Index
|
||||||
pushEmptyBlock = pushBasicBlock []
|
pushEmptyBlock = pushBasicBlock []
|
||||||
|
|
Loading…
Reference in New Issue
Block a user