Compare commits

..

2 Commits

Author SHA1 Message Date
f2b8084a9c Delete code that won't be used for this approach
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-25 23:13:15 -07:00
c00c8e3e85 Use different graph operations to implement construction
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-25 23:10:41 -07:00
5 changed files with 99 additions and 382 deletions

View File

@ -52,20 +52,17 @@ record Program : Set where
field
rootStmt : Stmt
private
buildResult = buildCfg rootStmt empty
graph : Graph
graph = proj₁ buildResult
graph = buildCfg rootStmt
State : Set
State = Graph.Index graph
initialState : State
initialState = Utils.proj₁ (proj₁ (proj₂ buildResult))
initialState = proj₁ (buildCfg-input rootStmt)
finalState : State
finalState = Utils.proj₂ (proj₁ (proj₂ buildResult))
finalState = proj₁ (buildCfg-output rootStmt)
private
vars-Set : StringSet

View File

@ -1,8 +1,8 @@
module Language.Graphs where
open import Language.Base
open import Language.Base using (Expr; Stmt; BasicStmt; ⟨_⟩; _then_; if_then_else_; while_repeat_)
open import Data.Fin as Fin using (Fin; suc; zero; _↑ˡ_; _↑ʳ_)
open import Data.Fin as Fin using (Fin; suc; zero)
open import Data.Fin.Properties as FinProp using (suc-injective)
open import Data.List as List using (List; []; _∷_)
open import Data.List.Membership.Propositional as ListMem using ()
@ -15,7 +15,7 @@ open import Data.Vec.Properties using (cast-is-id; ++-assoc; lookup-++ˡ; cast-s
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; refl; subst; trans)
open import Lattice
open import Utils using (x∈xs⇒fx∈fxs; _⊗_; _,_)
open import Utils using (x∈xs⇒fx∈fxs; _⊗_; _,_; ∈-cartesianProduct)
record Graph : Set where
constructor MkGraph
@ -31,157 +31,77 @@ record Graph : Set where
field
nodes : Vec (List BasicStmt) size
edges : List Edge
inputs : List Index
outputs : List Index
empty : Graph
empty = record
{ size = 0
; nodes = []
; edges = []
_↑ˡ_ : {n} (Fin n × Fin n) m (Fin (n Nat.+ m) × Fin (n Nat.+ m))
_↑ˡ_ (idx₁ , idx₂) m = (idx₁ Fin.↑ˡ m , idx₂ Fin.↑ˡ m)
_↑ʳ_ : {m} n (Fin m × Fin m) Fin (n Nat.+ m) × Fin (n Nat.+ m)
_↑ʳ_ n (idx₁ , idx₂) = (n Fin.↑ʳ idx₁ , n Fin.↑ʳ idx₂)
_↑ˡⁱ_ : {n} List (Fin n) m List (Fin (n Nat.+ m))
_↑ˡⁱ_ l m = List.map (Fin._↑ˡ m) l
_↑ʳⁱ_ : {m} n List (Fin m) List (Fin (n Nat.+ m))
_↑ʳⁱ_ n l = List.map (n Fin.↑ʳ_) l
_↑ˡᵉ_ : {n} List (Fin n × Fin n) m List (Fin (n Nat.+ m) × Fin (n Nat.+ m))
_↑ˡᵉ_ l m = List.map (_↑ˡ m) l
_↑ʳᵉ_ : {m} n List (Fin m × Fin m) List (Fin (n Nat.+ m) × Fin (n Nat.+ m))
_↑ʳᵉ_ n l = List.map (n ↑ʳ_) l
infixl 5 _∙_
_∙_ : Graph Graph Graph
_∙_ g₁ g₂ = record
{ size = Graph.size g₁ Nat.+ Graph.size g₂
; nodes = Graph.nodes g₁ ++ Graph.nodes g₂
; edges = (Graph.edges g₁ ↑ˡᵉ Graph.size g₂) List.++
(Graph.size g₁ ↑ʳᵉ Graph.edges g₂)
; inputs = (Graph.inputs g₁ ↑ˡⁱ Graph.size g₂) List.++
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)
; outputs = (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂) List.++
(Graph.size g₁ ↑ʳⁱ Graph.outputs g₂)
}
↑ˡ-Edge : {n} (Fin n × Fin n) m (Fin (n Nat.+ m) × Fin (n Nat.+ m))
↑ˡ-Edge (idx₁ , idx₂) m = (idx₁ ↑ˡ m , idx₂ ↑ˡ m)
infixl 5 _↦_
_↦_ : Graph Graph Graph
_↦_ g₁ g₂ = record
{ size = Graph.size g₁ Nat.+ Graph.size g₂
; nodes = Graph.nodes g₁ ++ Graph.nodes g₂
; edges = (Graph.edges g₁ ↑ˡᵉ Graph.size g₂) List.++
(Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++
(List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂)
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂))
; inputs = Graph.inputs g₁ ↑ˡⁱ Graph.size g₂
; outputs = Graph.size g₁ ↑ʳⁱ Graph.outputs g₂
}
loop : Graph Graph
loop g = record
{ size = Graph.size g
; nodes = Graph.nodes g
; edges = Graph.edges g List.++
List.cartesianProduct (Graph.outputs g) (Graph.inputs g)
; inputs = Graph.inputs g
; outputs = Graph.outputs g
}
_[_] : (g : Graph) Graph.Index g List BasicStmt
_[_] g idx = lookup (Graph.nodes g) idx
record _⊆_ (g₁ g₂ : Graph) : Set where
constructor Mk-⊆
field
n :
sg₂≡sg₁+n : Graph.size g₂ Graph.size g₁ Nat.+ n
newNodes : Vec (List BasicStmt) n
nsg₂≡nsg₁++newNodes : cast sg₂≡sg₁+n (Graph.nodes g₂) Graph.nodes g₁ ++ newNodes
e∈g₁⇒e∈g₂ : {e : Graph.Edge g₁}
e ListMem.∈ (Graph.edges g₁)
(↑ˡ-Edge e n) ListMem.∈ (subst (λ m List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
private
castᵉ : {n m : } .(p : n m) (Fin n × Fin n) (Fin m × Fin m)
castᵉ p (idx₁ , idx₂) = (Fin.cast p idx₁ , Fin.cast p idx₂)
↑ˡ-assoc : {s n₁ n₂} (f : Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) s Nat.+ n₁ Nat.+ n₂)
f ↑ˡ n₁ ↑ˡ n₂ Fin.cast p (f ↑ˡ (n₁ Nat.+ n₂))
↑ˡ-assoc zero p = refl
↑ˡ-assoc {suc s'} {n₁} {n₂} (suc f') p rewrite ↑ˡ-assoc f' (sym (+-assoc s' n₁ n₂)) = refl
↑ˡ-Edge-assoc : {s n₁ n₂} (e : Fin s × Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) s Nat.+ n₁ Nat.+ n₂)
↑ˡ-Edge (↑ˡ-Edge e n₁) n₂ castᵉ p (↑ˡ-Edge e (n₁ Nat.+ n₂))
↑ˡ-Edge-assoc (idx₁ , idx₂) p
rewrite ↑ˡ-assoc idx₁ p
rewrite ↑ˡ-assoc idx₂ p = refl
↑ˡ-identityʳ : {s} (f : Fin s) (p : s Nat.+ 0 s)
f Fin.cast p (f ↑ˡ 0)
↑ˡ-identityʳ zero p = refl
↑ˡ-identityʳ {suc s'} (suc f') p rewrite sym (↑ˡ-identityʳ f' (+-comm s' 0)) = refl
↑ˡ-Edge-identityʳ : {s} (e : Fin s × Fin s) (p : s Nat.+ 0 s)
e castᵉ p (↑ˡ-Edge e 0)
↑ˡ-Edge-identityʳ (idx₁ , idx₂) p
rewrite sym (↑ˡ-identityʳ idx₁ p)
rewrite sym (↑ˡ-identityʳ idx₂ p) = refl
cast∈⇒∈subst : {n m : } (p : n m) (q : m n)
(e : Fin n × Fin n) (es : List (Fin m × Fin m))
castᵉ p e ListMem.∈ es
e ListMem.∈ subst (λ m List (Fin m × Fin m)) q es
cast∈⇒∈subst refl refl (idx₁ , idx₂) es e∈es
rewrite FinProp.cast-is-id refl idx₁
rewrite FinProp.cast-is-id refl idx₂ = e∈es
⊆-trans : {g₁ g₂ g₃ : Graph} g₁ g₂ g₂ g₃ g₁ g₃
⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃}
(Mk-⊆ n₁ p₁@refl newNodes₁ nsg₂≡nsg₁++newNodes₁ e∈g₁⇒e∈g₂)
(Mk-⊆ n₂ p₂@refl newNodes₂ nsg₃≡nsg₂++newNodes₂ e∈g₂⇒e∈g₃)
rewrite cast-is-id refl ns₂
rewrite cast-is-id refl ns₃
with refl nsg₂≡nsg₁++newNodes₁
with refl nsg₃≡nsg₂++newNodes₂ =
record
{ n = n₁ Nat.+ n₂
; sg₂≡sg₁+n = +-assoc s₁ n₁ n₂
; newNodes = newNodes₁ ++ newNodes₂
; nsg₂≡nsg₁++newNodes = ++-assoc (+-assoc s₁ n₁ n₂) ns₁ newNodes₁ newNodes₂
; e∈g₁⇒e∈g₂ = λ {e} e∈g₁
cast∈⇒∈subst (sym (+-assoc s₁ n₁ n₂)) (+-assoc s₁ n₁ n₂) _ _
(subst (λ e' e' ListMem.∈ es₃)
(↑ˡ-Edge-assoc e (sym (+-assoc s₁ n₁ n₂)))
(e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁)))
singleton : List BasicStmt Graph
singleton bss = record
{ size = 1
; nodes = bss []
; edges = []
; inputs = zero []
; outputs = zero []
}
open import MonotonicState _⊆_ ⊆-trans renaming (MonotonicState to MonotonicGraphFunction)
instance
IndexRelaxable : Relaxable Graph.Index
IndexRelaxable = record
{ relax = λ { (Mk-⊆ n refl _ _ _) idx idx ↑ˡ n }
}
EdgeRelaxable : Relaxable Graph.Edge
EdgeRelaxable = record
{ relax = λ g₁⊆g₂ (idx₁ , idx₂)
( Relaxable.relax IndexRelaxable g₁⊆g₂ idx₁
, Relaxable.relax IndexRelaxable g₁⊆g₂ idx₂
)
}
open Relaxable {{...}}
pushBasicBlock : List BasicStmt MonotonicGraphFunction Graph.Index
pushBasicBlock bss g =
( record
{ size = Graph.size g Nat.+ 1
; nodes = Graph.nodes g ++ (bss [])
; edges = List.map (λ e ↑ˡ-Edge e 1) (Graph.edges g)
}
, ( Graph.size g ↑ʳ zero
, record
{ n = 1
; sg₂≡sg₁+n = refl
; newNodes = (bss [])
; nsg₂≡nsg₁++newNodes = cast-is-id refl _
; e∈g₁⇒e∈g₂ = λ e∈g₁ x∈xs⇒fx∈fxs (λ e ↑ˡ-Edge e 1) e∈g₁
}
)
)
pushEmptyBlock : MonotonicGraphFunction Graph.Index
pushEmptyBlock = pushBasicBlock []
addEdges : (g : Graph) List (Graph.Edge g) Σ Graph (λ g' g g')
addEdges (MkGraph s ns es) es' =
( record
{ size = s
; nodes = ns
; edges = es' List.++ es
}
, record
{ n = 0
; sg₂≡sg₁+n = +-comm 0 s
; newNodes = []
; nsg₂≡nsg₁++newNodes = cast-sym _ (++-identityʳ (+-comm s 0) ns)
; e∈g₁⇒e∈g₂ = λ {e} e∈es
cast∈⇒∈subst (+-comm s 0) (+-comm 0 s) _ _
(subst (λ e' e' ListMem.∈ _)
(↑ˡ-Edge-identityʳ e (+-comm s 0))
(ListMemProp.∈-++⁺ʳ es' e∈es))
}
)
buildCfg : Stmt MonotonicGraphFunction (Graph.Index Graph.Index)
buildCfg bs₁ = pushBasicBlock (bs₁ []) map (λ g idx (idx , idx))
buildCfg (s₁ then s₂) =
(buildCfg s₁ ⟨⊗⟩ buildCfg s₂)
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) addEdges g ((idx₂ , idx₃) []) })
map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) (idx₁ , idx₄) })
buildCfg (if _ then s₁ else s₂) =
(buildCfg s₁ ⟨⊗⟩ buildCfg s₂ ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx')
addEdges g ((idx , idx₁) (idx , idx₃) (idx₂ , idx') (idx₄ , idx') []) })
map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') (idx , idx') })
buildCfg (while _ repeat s) =
(buildCfg s ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
update (λ { g ((idx₁ , idx₂) , idx , idx')
addEdges g ((idx , idx') (idx , idx₁) (idx₂ , idx) []) })
map (λ { g ((idx₁ , idx₂) , idx , idx') (idx , idx') })
buildCfg : Stmt Graph
buildCfg bs₁ = singleton (bs₁ [])
buildCfg (s₁ then s₂) = buildCfg s₁ buildCfg s₂
buildCfg (if _ then s₁ else s₂) = singleton [] (buildCfg s₁ buildCfg s₂) singleton []
buildCfg (while _ repeat s) = loop (buildCfg s singleton [])

View File

@ -5,48 +5,24 @@ open import Language.Semantics
open import Language.Graphs
open import Language.Traces
open import MonotonicState _⊆_ ⊆-trans renaming (MonotonicState to MonotonicGraphFunction)
open import Utils using (_⊗_; _,_)
open Relaxable {{...}}
open import Data.Fin as Fin using (zero)
open import Data.List using (_∷_; [])
open import Data.Product using (Σ; _,_)
open import Data.Fin using (zero)
open import Data.List using (List; _∷_; [])
open import Data.Vec using (_∷_; [])
open import Data.Vec.Properties using (cast-is-id; lookup-++ˡ; lookup-++ʳ)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; subst)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl)
relax-preserves-[]≡ : (g₁ g₂ : Graph) (g₁⊆g₂ : g₁ g₂) (idx : Graph.Index g₁)
g₁ [ idx ] g₂ [ relax g₁⊆g₂ idx ]
relax-preserves-[]≡ g₁ g₂ (Mk-⊆ n refl newNodes nsg₂≡nsg₁++newNodes _) idx
rewrite cast-is-id refl (Graph.nodes g₂)
with refl nsg₂≡nsg₁++newNodes = sym (lookup-++ˡ (Graph.nodes g₁) _ _)
buildCfg-input : (s : Stmt) let g = buildCfg s in Σ (Graph.Index g) (λ idx Graph.inputs g idx [])
buildCfg-input bs₁ = (zero , refl)
buildCfg-input (s₁ then s₂)
with (idx , p) buildCfg-input s₁ rewrite p = (_ , refl)
buildCfg-input (if _ then s₁ else s₂) = (zero , refl)
buildCfg-input (while _ repeat s)
with (idx , p) buildCfg-input s rewrite p = (_ , refl)
instance
NodeEqualsMonotonic : {bss : List BasicStmt}
MonotonicPredicate (λ g n g [ n ] bss)
NodeEqualsMonotonic = record
{ relaxPredicate = λ g₁ g₂ idx g₁⊆g₂ g₁[idx]≡bss
trans (sym (relax-preserves-[]≡ g₁ g₂ g₁⊆g₂ idx)) g₁[idx]≡bss
}
pushBasicBlock-works : (bss : List BasicStmt) Always (λ g idx g [ idx ] bss) (pushBasicBlock bss)
pushBasicBlock-works bss = MkAlways (λ g lookup-++ʳ (Graph.nodes g) (bss []) zero)
TransformsEnv : (ρ₁ ρ₂ : Env) DependentPredicate (Graph.Index Graph.Index)
TransformsEnv ρ₁ ρ₂ g (idx₁ , idx₂) = Trace {g} idx₁ idx₂ ρ₁ ρ₂
instance
TransformsEnvMonotonic : {ρ₁ ρ₂ : Env} MonotonicPredicate (TransformsEnv ρ₁ ρ₂)
TransformsEnvMonotonic = {!!}
buildCfg-sufficient : {ρ₁ ρ₂ : Env} {s : Stmt} ρ₁ , s ⇒ˢ ρ₂ Always (TransformsEnv ρ₁ ρ₂) (buildCfg s)
buildCfg-sufficient {ρ₁} {ρ₂} { bs } (⇒ˢ-⟨⟩ ρ₁ ρ₂ bs ρ₁,bs⇒ρ) =
pushBasicBlock-works (bs [])
map-reason
(λ g idx g[idx]≡[bs] Trace-single (subst (ρ₁ ,_⇒ᵇˢ ρ₂)
(sym g[idx]≡[bs])
(ρ₁,bs⇒ρ [])))
buildCfg-sufficient {ρ₁} {ρ₂} {s₁ then s₂} (⇒ˢ-then ρ₁ ρ ρ₂ s₁ s₂ ρ₁,s₁⇒ρ ρ₂,s₂⇒ρ) =
(buildCfg-sufficient ρ₁,s₁⇒ρ ⟨⊗⟩-reason buildCfg-sufficient ρ₂,s₂⇒ρ)
update-reason {!!}
map-reason {!!}
buildCfg-output : (s : Stmt) let g = buildCfg s in Σ (Graph.Index g) (λ idx Graph.outputs g idx [])
buildCfg-output bs₁ = (zero , refl)
buildCfg-output (s₁ then s₂)
with (idx , p) buildCfg-output s₂ rewrite p = (_ , refl)
buildCfg-output (if _ then s₁ else s₂) = (_ , refl)
buildCfg-output (while _ repeat s)
with (idx , p) buildCfg-output s rewrite p = (_ , refl)

View File

@ -1,184 +0,0 @@
open import Agda.Primitive using (lsuc)
module MonotonicState {s} {S : Set s}
(_≼_ : S S Set s)
(≼-trans : {s₁ s₂ s₃ : S} s₁ s₂ s₂ s₃ s₁ s₃) where
open import Data.Product using (Σ; _×_; _,_)
open import Utils using (_⊗_; _,_)
-- Sometimes, we need a state monad whose values depend on the state. However,
-- one trouble with such monads is that as the state evolves, old values
-- in scope are over the 'old' state, and don't get updated accordingly.
-- Apparently, a related version of this problem is called 'demonic bind'.
--
-- One solution to the problem is to also witness some kind of relationtion
-- between the input and output states. Using this relationship makes it possible
-- to 'bring old values up to speed'.
--
-- Motivated primarily by constructing a Control Flow Graph, the 'relationship'
-- I've chosen is a 'less-than' relation. Thus, 'MonotonicState' is just
-- a (dependent) state "monad" that also witnesses that the state keeps growing.
MonotonicState : (S Set s) Set s
MonotonicState T = (s₁ : S) Σ S (λ s₂ T s₂ × s₁ s₂)
-- It's not a given that the (arbitrary) _≼_ relationship can be used for
-- updating old values. The Relaxable typeclass represents type constructor
-- that support the operation.
record Relaxable (T : S Set s) : Set (lsuc s) where
field relax : {s₁ s₂ : S} s₁ s₂ T s₁ T s₂
instance
ProdRelaxable : {P : S Set s} {Q : S Set s}
{{ PRelaxable : Relaxable P }} {{ QRelaxable : Relaxable Q }}
Relaxable (P Q)
ProdRelaxable {{pr}} {{qr}} = record
{ relax = (λ { g₁≼g₂ (p , q)
( Relaxable.relax pr g₁≼g₂ p
, Relaxable.relax qr g₁≼g₂ q) }
)
}
-- In general, the "MonotonicState monad" is not even a monad; it's not
-- even applicative. The trouble is that functions in general cannot be
-- 'relaxed', and to apply an 'old' function to a 'new' value, you'd thus
-- need to un-relax the value (which also isn't possible in general).
--
-- However, we _can_ combine pairs from two functions into a tuple, which
-- would equivalent to the applicative operation if functions were relaxable.
--
-- TODO: Now that I think about it, the swapped version of the applicative
-- operation is possible, since it doesn't require lifting functions.
infixr 4 _⟨⊗⟩_
_⟨⊗⟩_ : {T₁ T₂ : S Set s} {{ _ : Relaxable T₁ }}
MonotonicState T₁ MonotonicState T₂ MonotonicState (T₁ T₂)
_⟨⊗⟩_ {{r}} f₁ f₂ s
with (s' , (t₁ , s≼s')) f₁ s
with (s'' , (t₂ , s'≼s'')) f₂ s' =
(s'' , ((Relaxable.relax r s'≼s'' t₁ , t₂) , ≼-trans s≼s' s'≼s''))
infixl 4 _update_
_update_ : {T : S Set s} {{ _ : Relaxable T }}
MonotonicState T ( (s : S) T s Σ S (λ s' s s'))
MonotonicState T
_update_ {{r}} f mod s
with (s' , (t , s≼s')) f s
with (s'' , s'≼s'') mod s' t =
(s'' , ((Relaxable.relax r s'≼s'' t , ≼-trans s≼s' s'≼s'')))
infixl 4 _map_
_map_ : {T₁ T₂ : S Set s}
MonotonicState T₁ ( (s : S) T₁ s T₂ s) MonotonicState T₂
_map_ f fn s = let (s' , (t₁ , s≼s')) = f s in (s' , (fn s' t₁ , s≼s'))
-- To reason about MonotonicState instances, we need predicates over their
-- values. But such values are dependent, so our predicates need to accept
-- the state as argument, too.
DependentPredicate : (S Set s) Set (lsuc s)
DependentPredicate T = (s₁ : S) T s₁ Set s
data Both {T₁ T₂ : S Set s}
(P : DependentPredicate T₁)
(Q : DependentPredicate T₂) : DependentPredicate (T₁ T₂) where
MkBoth : {s : S} {t₁ : T₁ s} {t₂ : T₂ s} P s t₁ Q s t₂ Both P Q s (t₁ , t₂)
data And {T : S Set s}
(P : DependentPredicate T)
(Q : DependentPredicate T) : DependentPredicate T where
MkAnd : {s : S} {t : T s} P s t Q s t And P Q s t
-- Since monotnic functions keep adding on to the state, proofs of
-- predicates over their outputs go stale fast (they describe old values of
-- the state). To keep them relevant, we need them to still hold on 'bigger
-- states'. We call such predicates monotonic as well, since they respect the
-- ordering relation.
record MonotonicPredicate {T : S Set s} {{ r : Relaxable T }} (P : DependentPredicate T) : Set s where
field relaxPredicate : (s₁ s₂ : S) (t₁ : T s₁) (s₁≼s₂ : s₁ s₂)
P s₁ t₁ P s₂ (Relaxable.relax r s₁≼s₂ t₁)
instance
BothMonotonic : {T₁ : S Set s} {T₂ : S Set s}
{{ _ : Relaxable T₁ }} {{ _ : Relaxable T₂ }}
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
{{_ : MonotonicPredicate P}} {{_ : MonotonicPredicate Q}}
MonotonicPredicate (Both P Q)
BothMonotonic {{_}} {{_}} {{P-Mono}} {{Q-Mono}} = record
{ relaxPredicate = (λ { s₁ s₂ (t₁ , t₂) s₁≼s₂ (MkBoth p q)
MkBoth (MonotonicPredicate.relaxPredicate P-Mono s₁ s₂ t₁ s₁≼s₂ p)
(MonotonicPredicate.relaxPredicate Q-Mono s₁ s₂ t₂ s₁≼s₂ q)})
}
AndMonotonic : {T : S Set s} {{ _ : Relaxable T }}
{P : DependentPredicate T} {Q : DependentPredicate T}
{{_ : MonotonicPredicate P}} {{_ : MonotonicPredicate Q}}
MonotonicPredicate (And P Q)
AndMonotonic {{_}} {{P-Mono}} {{Q-Mono}} = record
{ relaxPredicate = (λ { s₁ s₂ t s₁≼s₂ (MkAnd p q)
MkAnd (MonotonicPredicate.relaxPredicate P-Mono s₁ s₂ t s₁≼s₂ p)
(MonotonicPredicate.relaxPredicate Q-Mono s₁ s₂ t s₁≼s₂ q)})
}
-- A MonotonicState "monad" m has a certain property if its ouputs satisfy that
-- property for all inputs.
data Always {T : S Set s} (P : DependentPredicate T) (m : MonotonicState T) : Set s where
MkAlways : ( s₁ let (s₂ , t , _) = m s₁ in P s₂ t) Always P m
infixr 4 _⟨⊗⟩-reason_
_⟨⊗⟩-reason_ : {T₁ T₂ : S Set s} {{ _ : Relaxable T₁ }}
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
{{P-Mono : MonotonicPredicate P}}
{m₁ : MonotonicState T₁} {m₂ : MonotonicState T₂}
Always P m₁ Always Q m₂ Always (Both P Q) (m₁ ⟨⊗⟩ m₂)
_⟨⊗⟩-reason_ {P = P} {Q = Q} {{P-Mono = P-Mono}} {m₁ = m₁} {m₂ = m₂} (MkAlways aP) (MkAlways aQ) =
MkAlways impl
where
impl : s₁ let (s₂ , t , _) = (m₁ ⟨⊗⟩ m₂) s₁ in (Both P Q) s₂ t
impl s
with p aP s
with (s' , (t₁ , s≼s')) m₁ s
with q aQ s'
with (s'' , (t₂ , s'≼s'')) m₂ s' =
MkBoth (MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p) q
infixl 4 _update-reason_
_update-reason_ : {T : S Set s} {{ r : Relaxable T }}
{P : DependentPredicate T} {Q : DependentPredicate T}
{{P-Mono : MonotonicPredicate P}}
{m : MonotonicState T} {mod : (s : S) T s Σ S (λ s' s s')}
Always P m ( (s : S) (t : T s)
let (s' , s≼s') = mod s t
in P s t Q s' (Relaxable.relax r s≼s' t))
Always (And P Q) (m update mod)
_update-reason_ {{r = r}} {P = P} {Q = Q} {{P-Mono = P-Mono}} {m = m} {mod = mod} (MkAlways aP) modQ =
MkAlways impl
where
impl : s₁ let (s₂ , t , _) = (m update mod) s₁ in (And P Q) s₂ t
impl s
with p aP s
with (s' , (t , s≼s')) m s
with q modQ s' t p
with (s'' , s'≼s'') mod s' t =
MkAnd (MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p) q
infixl 4 _map-reason_
_map-reason_ : {T₁ T₂ : S Set s}
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
{m : MonotonicState T₁}
{f : (s : S) T₁ s T₂ s}
Always P m ( (s : S) (t₁ : T₁ s) P s t₁ Q s (f s t₁))
Always Q (m map f)
_map-reason_ {P = P} {Q = Q} {m = m} {f = f} (MkAlways aP) P⇒Q =
MkAlways impl
where
impl : s₁ let (s₂ , t , _) = (m map f) s₁ in Q s₂ t
impl s
with p aP s
with (s' , (t₁ , s≼s')) m s = P⇒Q s' t₁ p

View File

@ -1,9 +1,11 @@
module Utils where
open import Agda.Primitive using () renaming (_⊔_ to _⊔_)
open import Data.Product as Prod using ()
open import Data.Nat using (; suc)
open import Data.List using (List; []; _∷_; _++_) renaming (map to mapˡ)
open import Data.List using (List; cartesianProduct; []; _∷_; _++_) renaming (map to mapˡ)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
open import Data.List.Relation.Unary.All using (All; []; _∷_; map)
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
open import Function.Definitions using (Injective)
@ -78,3 +80,9 @@ proj₁ (v , _) = v
proj₂ : {a p q} {A : Set a} {P : A Set p} {Q : A Set q} {a : A} (P Q) a Q a
proj₂ (_ , v) = v
∈-cartesianProduct : {a b} {A : Set a} {B : Set b}
{x : A} {xs : List A} {y : B} {ys : List B}
x xs y ys (x Prod., y) cartesianProduct xs ys
∈-cartesianProduct {x = x} (here refl) y∈ys = ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (x Prod.,_) y∈ys)
∈-cartesianProduct {x = x} {xs = x' _} {ys = ys} (there x∈rest) y∈ys = ListMemProp.∈-++⁺ʳ (mapˡ (x' Prod.,_) ys) (∈-cartesianProduct x∈rest y∈ys)