Compare commits

..

3 Commits

Author SHA1 Message Date
2f91ca113e Make 'MonotonicPredicate' into another typeclass
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-13 20:56:56 -07:00
7571cb7451 Extract 'monotonic state' into its own module
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-13 20:46:30 -07:00
fc27b045d3 Remove nested module from Graphs
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-13 19:33:58 -07:00
3 changed files with 173 additions and 144 deletions

View File

@ -52,7 +52,7 @@ record Program : Set where
rootStmt : Stmt rootStmt : Stmt
private private
buildResult = Construction.buildCfg rootStmt empty buildResult = buildCfg rootStmt empty
graph : Graph graph : Graph
graph = proj₁ buildResult graph = proj₁ buildResult

View File

@ -110,8 +110,7 @@ cast∈⇒∈subst refl refl (idx₁ , idx₂) es e∈es
(e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁))) (e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁)))
} }
record Relaxable (T : Graph Set) : Set where open import MonotonicState _⊆_ ⊆-trans renaming (MonotonicState to MonotonicGraphFunction)
field relax : {g₁ g₂ : Graph} g₁ g₂ T g₁ T g₂
instance instance
IndexRelaxable : Relaxable Graph.Index IndexRelaxable : Relaxable Graph.Index
@ -127,17 +126,7 @@ instance
) )
} }
ProdRelaxable : {P : Graph Set} {Q : Graph Set} open Relaxable {{...}}
{{ PRelaxable : Relaxable P }} {{ QRelaxable : Relaxable Q }}
Relaxable (P Q)
ProdRelaxable {{pr}} {{qr}} = record
{ relax = (λ { g₁⊆g₂ (p , q)
( Relaxable.relax pr g₁⊆g₂ p
, Relaxable.relax qr g₁⊆g₂ q) }
)
}
open Relaxable {{...}} public
relax-preserves-[]≡ : (g₁ g₂ : Graph) (g₁⊆g₂ : g₁ g₂) (idx : Graph.Index g₁) relax-preserves-[]≡ : (g₁ g₂ : Graph) (g₁⊆g₂ : g₁ g₂) (idx : Graph.Index g₁)
g₁ [ idx ] g₂ [ relax g₁⊆g₂ idx ] g₁ [ idx ] g₂ [ relax g₁⊆g₂ idx ]
@ -145,136 +134,60 @@ relax-preserves-[]≡ g₁ g₂ (Mk-⊆ n refl newNodes nsg₂≡nsg₁++newNode
rewrite cast-is-id refl (Graph.nodes g₂) rewrite cast-is-id refl (Graph.nodes g₂)
with refl nsg₂≡nsg₁++newNodes = sym (lookup-++ˡ (Graph.nodes g₁) _ _) with refl nsg₂≡nsg₁++newNodes = sym (lookup-++ˡ (Graph.nodes g₁) _ _)
-- Tools for graph construction. The most important is a 'monotonic function': pushBasicBlock : List BasicStmt MonotonicGraphFunction Graph.Index
-- one that takes a graph, and produces another graph, such that the pushBasicBlock bss g =
-- new graph includes all the information from the old one. ( record
{ size = Graph.size g Nat.+ 1
; nodes = Graph.nodes g ++ (bss [])
; edges = List.map (λ e ↑ˡ-Edge e 1) (Graph.edges g)
}
, ( Graph.size g ↑ʳ zero
, record
{ n = 1
; sg₂≡sg₁+n = refl
; newNodes = (bss [])
; nsg₂≡nsg₁++newNodes = cast-is-id refl _
; e∈g₁⇒e∈g₂ = λ e∈g₁ x∈xs⇒fx∈fxs (λ e ↑ˡ-Edge e 1) e∈g₁
}
)
)
MonotonicGraphFunction : (Graph Set) Set addEdges : (g : Graph) List (Graph.Edge g) Σ Graph (λ g' g g')
MonotonicGraphFunction T = (g₁ : Graph) Σ Graph (λ g₂ T g₂ × g₁ g₂) addEdges (MkGraph s ns es) es' =
( record
{ size = s
; nodes = ns
; edges = es' List.++ es
}
, record
{ n = 0
; sg₂≡sg₁+n = +-comm 0 s
; newNodes = []
; nsg₂≡nsg₁++newNodes = cast-sym _ (++-identityʳ (+-comm s 0) ns)
; e∈g₁⇒e∈g₂ = λ {e} e∈es
cast∈⇒∈subst (+-comm s 0) (+-comm 0 s) _ _
(subst (λ e' e' ListMem.∈ _)
(↑ˡ-Edge-identityʳ e (+-comm s 0))
(ListMemProp.∈-++⁺ʳ es' e∈es))
}
)
-- Now, define some operations on monotonic functions; these are useful pushEmptyBlock : MonotonicGraphFunction Graph.Index
-- to save the work of threading intermediate graphs in and out of operations. pushEmptyBlock = pushBasicBlock []
infixr 2 _⟨⊗⟩_ buildCfg : Stmt MonotonicGraphFunction (Graph.Index Graph.Index)
_⟨⊗⟩_ : {T₁ T₂ : Graph Set} {{ T₁Relaxable : Relaxable T₁ }} buildCfg bs₁ = pushBasicBlock (bs₁ []) map (λ g idx (idx , idx))
MonotonicGraphFunction T₁ MonotonicGraphFunction T₂ buildCfg (s₁ then s₂) =
MonotonicGraphFunction (T₁ T₂) (buildCfg s₁ ⟨⊗⟩ buildCfg s₂)
_⟨⊗⟩_ {{r}} f₁ f₂ g update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) addEdges g ((idx₂ , idx₃) []) })
with (g' , (t₁ , g⊆g')) f₁ g map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) (idx₁ , idx₄) })
with (g'' , (t₂ , g'⊆g'')) f₂ g' = buildCfg (if _ then s₁ else s₂) =
(g'' , ((Relaxable.relax r g'⊆g'' t₁ , t₂) , ⊆-trans g⊆g' g'⊆g'')) (buildCfg s₁ ⟨⊗⟩ buildCfg s₂ ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx')
infixl 2 _update_ addEdges g ((idx , idx₁) (idx , idx₃) (idx₂ , idx') (idx₄ , idx') []) })
_update_ : {T : Graph Set} {{ TRelaxable : Relaxable T }} map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') (idx , idx') })
MonotonicGraphFunction T ( (g : Graph) T g Σ Graph (λ g' g g')) buildCfg (while _ repeat s) =
MonotonicGraphFunction T (buildCfg s ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
_update_ {{r}} f mod g update (λ { g ((idx₁ , idx₂) , idx , idx')
with (g' , (t , g⊆g')) f g addEdges g ((idx , idx') (idx , idx₁) (idx₂ , idx) []) })
with (g'' , g'⊆g'') mod g' t = map (λ { g ((idx₁ , idx₂) , idx , idx') (idx , idx') })
(g'' , ((Relaxable.relax r g'⊆g'' t , ⊆-trans g⊆g' g'⊆g'')))
infixl 2 _map_
_map_ : {T₁ T₂ : Graph Set}
MonotonicGraphFunction T₁ ( (g : Graph) T₁ g T₂ g)
MonotonicGraphFunction T₂
_map_ f fn g = let (g' , (t₁ , g⊆g')) = f g in (g' , (fn g' t₁ , g⊆g'))
-- To reason about monotonic functions and what we do, we need a way
-- to describe values they produce. A 'graph-value predicate' is
-- just a predicate for some (dependent) value.
GraphValuePredicate : (Graph Set) Set
GraphValuePredicate T = (g : Graph) T g Set
Both : {T₁ T₂ : Graph Set} GraphValuePredicate T₁ GraphValuePredicate T₂
GraphValuePredicate (T₁ T₂)
Both P Q = (λ { g (t₁ , t₂) (P g t₁ × Q g t₂) })
-- Since monotnic functions keep adding on to a function, proofs of
-- graph-value predicates go stale fast (they describe old values of
-- the graph). To keep propagating them through, we need them to still
-- on 'bigger graphs'. We call such predicates monotonic as well, since
-- they respect the ordering of graphs.
MonotonicPredicate : {T : Graph Set} {{ TRelaxable : Relaxable T }}
GraphValuePredicate T Set
MonotonicPredicate {T} P = (g₁ g₂ : Graph) (t₁ : T g₁) (g₁⊆g₂ : g₁ g₂)
P g₁ t₁ P g₂ (relax g₁⊆g₂ t₁)
-- A 'map' has a certain property if its ouputs satisfy that property
-- for all inputs.
always : {T : Graph Set} GraphValuePredicate T MonotonicGraphFunction T Set
always P m = g₁ let (g₂ , t , _) = m g₁ in P g₂ t
⟨⊗⟩-reason : {T₁ T₂ : Graph Set} {{ T₁Relaxable : Relaxable T₁ }}
{P : GraphValuePredicate T₁} {Q : GraphValuePredicate T₂}
{P-Mono : MonotonicPredicate P}
{m₁ : MonotonicGraphFunction T₁} {m₂ : MonotonicGraphFunction T₂}
always P m₁ always Q m₂ always (Both P Q) (m₁ ⟨⊗⟩ m₂)
⟨⊗⟩-reason {P-Mono = P-Mono} {m₁ = m₁} {m₂ = m₂} aP aQ g
with p aP g
with (g' , (t₁ , g⊆g')) m₁ g
with q aQ g'
with (g'' , (t₂ , g'⊆g'')) m₂ g' = (P-Mono _ _ _ g'⊆g'' p , q)
module Construction where
pushBasicBlock : List BasicStmt MonotonicGraphFunction Graph.Index
pushBasicBlock bss g =
( record
{ size = Graph.size g Nat.+ 1
; nodes = Graph.nodes g ++ (bss [])
; edges = List.map (λ e ↑ˡ-Edge e 1) (Graph.edges g)
}
, ( Graph.size g ↑ʳ zero
, record
{ n = 1
; sg₂≡sg₁+n = refl
; newNodes = (bss [])
; nsg₂≡nsg₁++newNodes = cast-is-id refl _
; e∈g₁⇒e∈g₂ = λ e∈g₁ x∈xs⇒fx∈fxs (λ e ↑ˡ-Edge e 1) e∈g₁
}
)
)
addEdges : (g : Graph) List (Graph.Edge g) Σ Graph (λ g' g g')
addEdges (MkGraph s ns es) es' =
( record
{ size = s
; nodes = ns
; edges = es' List.++ es
}
, record
{ n = 0
; sg₂≡sg₁+n = +-comm 0 s
; newNodes = []
; nsg₂≡nsg₁++newNodes = cast-sym _ (++-identityʳ (+-comm s 0) ns)
; e∈g₁⇒e∈g₂ = λ {e} e∈es
cast∈⇒∈subst (+-comm s 0) (+-comm 0 s) _ _
(subst (λ e' e' ListMem.∈ _)
(↑ˡ-Edge-identityʳ e (+-comm s 0))
(ListMemProp.∈-++⁺ʳ es' e∈es))
}
)
pushEmptyBlock : MonotonicGraphFunction Graph.Index
pushEmptyBlock = pushBasicBlock []
buildCfg : Stmt MonotonicGraphFunction (Graph.Index Graph.Index)
buildCfg bs₁ = pushBasicBlock (bs₁ []) map (λ g idx (idx , idx))
buildCfg (s₁ then s₂) =
(buildCfg s₁ ⟨⊗⟩ buildCfg s₂)
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) addEdges g ((idx₂ , idx₃) []) })
map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) (idx₁ , idx₄) })
buildCfg (if _ then s₁ else s₂) =
(buildCfg s₁ ⟨⊗⟩ buildCfg s₂ ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx')
addEdges g ((idx , idx₁) (idx , idx₃) (idx₂ , idx') (idx₄ , idx') []) })
map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') (idx , idx') })
buildCfg (while _ repeat s) =
(buildCfg s ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
update (λ { g ((idx₁ , idx₂) , idx , idx')
addEdges g ((idx , idx') (idx , idx₁) (idx₂ , idx) []) })
map (λ { g ((idx₁ , idx₂) , idx , idx') (idx , idx') })

116
MonotonicState.agda Normal file
View File

@ -0,0 +1,116 @@
open import Agda.Primitive using (lsuc)
module MonotonicState {s} {S : Set s}
(_≼_ : S S Set s)
(≼-trans : {s₁ s₂ s₃ : S} s₁ s₂ s₂ s₃ s₁ s₃) where
open import Data.Product using (Σ; _×_; _,_)
open import Utils using (_⊗_; _,_)
-- Sometimes, we need a state monad whose values depend on the state. However,
-- one trouble with such monads is that as the state evolves, old values
-- in scope are over the 'old' state, and don't get updated accordingly.
-- Apparently, a related version of this problem is called 'demonic bind'.
--
-- One solution to the problem is to also witness some kind of relationtion
-- between the input and output states. Using this relationship makes it possible
-- to 'bring old values up to speed'.
--
-- Motivated primarily by constructing a Control Flow Graph, the 'relationship'
-- I've chosen is a 'less-than' relation. Thus, 'MonotonicState' is just
-- a (dependent) state "monad" that also witnesses that the state keeps growing.
MonotonicState : (S Set s) Set s
MonotonicState T = (s₁ : S) Σ S (λ s₂ T s₂ × s₁ s₂)
-- It's not a given that the (arbitrary) _≼_ relationship can be used for
-- updating old values. The Relaxable typeclass represents type constructor
-- that support the operation.
record Relaxable (T : S Set s) : Set (lsuc s) where
field relax : {s₁ s₂ : S} s₁ s₂ T s₁ T s₂
instance
ProdRelaxable : {P : S Set s} {Q : S Set s}
{{ PRelaxable : Relaxable P }} {{ QRelaxable : Relaxable Q }}
Relaxable (P Q)
ProdRelaxable {{pr}} {{qr}} = record
{ relax = (λ { g₁≼g₂ (p , q)
( Relaxable.relax pr g₁≼g₂ p
, Relaxable.relax qr g₁≼g₂ q) }
)
}
-- In general, the "MonotonicState monad" is not even a monad; it's not
-- even applicative. The trouble is that functions in general cannot be
-- 'relaxed', and to apply an 'old' function to a 'new' value, you'd thus
-- need to un-relax the value (which also isn't possible in general).
--
-- However, we _can_ combine pairs from two functions into a tuple, which
-- would equivalent to the applicative operation if functions were relaxable.
--
-- TODO: Now that I think about it, the swapped version of the applicative
-- operation is possible, since it doesn't require lifting functions.
infixr 4 _⟨⊗⟩_
_⟨⊗⟩_ : {T₁ T₂ : S Set s} {{ _ : Relaxable T₁ }}
MonotonicState T₁ MonotonicState T₂ MonotonicState (T₁ T₂)
_⟨⊗⟩_ {{r}} f₁ f₂ s
with (s' , (t₁ , s≼s')) f₁ s
with (s'' , (t₂ , s'≼s'')) f₂ s' =
(s'' , ((Relaxable.relax r s'≼s'' t₁ , t₂) , ≼-trans s≼s' s'≼s''))
infixl 4 _update_
_update_ : {T : S Set s} {{ _ : Relaxable T }}
MonotonicState T ( (s : S) T s Σ S (λ s' s s'))
MonotonicState T
_update_ {{r}} f mod s
with (s' , (t , s≼s')) f s
with (s'' , s'≼s'') mod s' t =
(s'' , ((Relaxable.relax r s'≼s'' t , ≼-trans s≼s' s'≼s'')))
infixl 4 _map_
_map_ : {T₁ T₂ : S Set s}
MonotonicState T₁ ( (s : S) T₁ s T₂ s) MonotonicState T₂
_map_ f fn s = let (s' , (t₁ , s≼s')) = f s in (s' , (fn s' t₁ , s≼s'))
-- To reason about MonotonicState instances, we need predicates over their
-- values. But such values are dependent, so our predicates need to accept
-- the state as argument, too.
DependentPredicate : (S Set s) Set (lsuc s)
DependentPredicate T = (s₁ : S) T s₁ Set s
Both : {T₁ T₂ : S Set s} DependentPredicate T₁ DependentPredicate T₂
DependentPredicate (T₁ T₂)
Both P Q = (λ { s (t₁ , t₂) (P s t₁ × Q s t₂) })
-- Since monotnic functions keep adding on to the state, proofs of
-- predicates over their outputs go stale fast (they describe old values of
-- the state). To keep them relevant, we need them to still hold on 'bigger
-- states'. We call such predicates monotonic as well, since they respect the
-- ordering relation.
record MonotonicPredicate {T : S Set s} {{ r : Relaxable T }} (P : DependentPredicate T) : Set s where
field relaxPredicate : (s₁ s₂ : S) (t₁ : T s₁) (s₁≼s₂ : s₁ s₂)
P s₁ t₁ P s₂ (Relaxable.relax r s₁≼s₂ t₁)
-- A MonotonicState "monad" m has a certain property if its ouputs satisfy that
-- property for all inputs.
always : {T : S Set s} DependentPredicate T MonotonicState T Set s
always P m = s₁ let (s₂ , t , _) = m s₁ in P s₂ t
⟨⊗⟩-reason : {T₁ T₂ : S Set s} {{ _ : Relaxable T₁ }}
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
{{P-Mono : MonotonicPredicate P}}
{m₁ : MonotonicState T₁} {m₂ : MonotonicState T₂}
always P m₁ always Q m₂ always (Both P Q) (m₁ ⟨⊗⟩ m₂)
⟨⊗⟩-reason {{P-Mono = P-Mono}} {m₁ = m₁} {m₂ = m₂} aP aQ s
with p aP s
with (s' , (t₁ , s≼s')) m₁ s
with q aQ s'
with (s'' , (t₂ , s'≼s'')) m₂ s' =
(MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p , q)