agda-spa/Lattice/Nat.agda
Danila Fedorin dce21b3696 Moved the Nat lattice instance into an actual file
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2023-09-23 15:34:59 -07:00

84 lines
3.1 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module Lattice.Nat where
open import Equivalence
open import Lattice
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans)
open import Data.Nat using (; _⊔_; _⊓_; _≤_)
open import Data.Nat.Properties using
( ⊔-assoc; ⊔-comm; ⊔-idem
; ⊓-assoc; ⊓-comm; ⊓-idem
; ⊓-mono-≤; ⊔-mono-≤
; m≤n⇒m≤o⊔n; m≤n⇒m⊓o≤n; ≤-refl; ≤-antisym
)
private
≡-⊔-cong : {a₁ a₂ a₃ a₄} a₁ a₂ a₃ a₄ (a₁ a₃) (a₂ a₄)
≡-⊔-cong a₁≡a₂ a₃≡a₄ rewrite a₁≡a₂ rewrite a₃≡a₄ = refl
≡-⊓-cong : {a₁ a₂ a₃ a₄} a₁ a₂ a₃ a₄ (a₁ a₃) (a₂ a₄)
≡-⊓-cong a₁≡a₂ a₃≡a₄ rewrite a₁≡a₂ rewrite a₃≡a₄ = refl
NatIsMaxSemilattice : IsSemilattice _≡_ _⊔_
NatIsMaxSemilattice = record
{ ≈-equiv = record
{ ≈-refl = refl
; ≈-sym = sym
; ≈-trans = trans
}
; ≈-⊔-cong = ≡-⊔-cong
; ⊔-assoc = ⊔-assoc
; ⊔-comm = ⊔-comm
; ⊔-idemp = ⊔-idem
}
NatIsMinSemilattice : IsSemilattice _≡_ _⊓_
NatIsMinSemilattice = record
{ ≈-equiv = record
{ ≈-refl = refl
; ≈-sym = sym
; ≈-trans = trans
}
; ≈-⊔-cong = ≡-⊓-cong
; ⊔-assoc = ⊓-assoc
; ⊔-comm = ⊓-comm
; ⊔-idemp = ⊓-idem
}
private
max-bound₁ : {x y z : } x y z x z
max-bound₁ {x} {y} {z} x⊔y≡z
rewrite sym x⊔y≡z
rewrite ⊔-comm x y = m≤n⇒m≤o⊔n y (≤-refl)
min-bound₁ : {x y z : } x y z z x
min-bound₁ {x} {y} {z} x⊓y≡z
rewrite sym x⊓y≡z = m≤n⇒m⊓o≤n y (≤-refl)
minmax-absorb : {x y : } x (x y) x
minmax-absorb {x} {y} = ≤-antisym x⊓x⊔y≤x (helper x⊓x≤x⊓x⊔y (⊓-idem x))
where
x⊓x⊔y≤x = min-bound₁ {x} {x y} {x (x y)} refl
x⊓x≤x⊓x⊔y = ⊓-mono-≤ {x} {x} ≤-refl (max-bound₁ {x} {y} {x y} refl)
-- >:(
helper : x x x (x y) x x x x x (x y)
helper x⊓x≤x⊓x⊔y x⊓x≡x rewrite x⊓x≡x = x⊓x≤x⊓x⊔y
maxmin-absorb : {x y : } x (x y) x
maxmin-absorb {x} {y} = ≤-antisym (helper x⊔x⊓y≤x⊔x (⊔-idem x)) x≤x⊔x⊓y
where
x≤x⊔x⊓y = max-bound₁ {x} {x y} {x (x y)} refl
x⊔x⊓y≤x⊔x = ⊔-mono-≤ {x} {x} ≤-refl (min-bound₁ {x} {y} {x y} refl)
-- >:(
helper : x (x y) x x x x x x (x y) x
helper x⊔x⊓y≤x⊔x x⊔x≡x rewrite x⊔x≡x = x⊔x⊓y≤x⊔x
NatIsLattice : IsLattice _≡_ _⊔_ _⊓_
NatIsLattice = record
{ joinSemilattice = NatIsMaxSemilattice
; meetSemilattice = NatIsMinSemilattice
; absorb-⊔-⊓ = λ x y maxmin-absorb {x} {y}
; absorb-⊓-⊔ = λ x y minmax-absorb {x} {y}
}