200 lines
10 KiB
Agda
200 lines
10 KiB
Agda
open import Lattice
|
||
|
||
module Lattice.Prod {a b} (A : Set a) (B : Set b)
|
||
{_≈₁_ : A → A → Set a} {_≈₂_ : B → B → Set b}
|
||
{_⊔₁_ : A → A → A} {_⊔₂_ : B → B → B}
|
||
{_⊓₁_ : A → A → A} {_⊓₂_ : B → B → B}
|
||
{{lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_}} {{lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_}} where
|
||
|
||
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔ℓ_)
|
||
open import Data.Nat using (ℕ; _≤_; _+_; suc)
|
||
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
|
||
open import Data.Empty using (⊥-elim)
|
||
open import Relation.Binary.Core using (_Preserves_⟶_ )
|
||
open import Relation.Binary.PropositionalEquality using (sym; subst)
|
||
open import Relation.Binary.Definitions using (Decidable)
|
||
open import Relation.Nullary using (¬_; yes; no)
|
||
open import Equivalence
|
||
import Chain
|
||
|
||
open IsLattice lA using () renaming
|
||
( ≈-equiv to ≈₁-equiv; ≈-refl to ≈₁-refl; ≈-sym to ≈₁-sym; ≈-trans to ≈₁-trans
|
||
; joinSemilattice to joinSemilattice₁
|
||
; meetSemilattice to meetSemilattice₁
|
||
; FixedHeight to FixedHeight₁
|
||
; ⊔-idemp to ⊔₁-idemp
|
||
; _≼_ to _≼₁_; _≺_ to _≺₁_
|
||
; ≺-cong to ≺₁-cong
|
||
)
|
||
|
||
open IsLattice lB using () renaming
|
||
( ≈-equiv to ≈₂-equiv; ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym; ≈-trans to ≈₂-trans
|
||
; joinSemilattice to joinSemilattice₂
|
||
; meetSemilattice to meetSemilattice₂
|
||
; FixedHeight to FixedHeight₂
|
||
; ⊔-idemp to ⊔₂-idemp
|
||
; _≼_ to _≼₂_; _≺_ to _≺₂_
|
||
; ≺-cong to ≺₂-cong
|
||
)
|
||
|
||
_≈_ : A × B → A × B → Set (a ⊔ℓ b)
|
||
(a₁ , b₁) ≈ (a₂ , b₂) = (a₁ ≈₁ a₂) × (b₁ ≈₂ b₂)
|
||
|
||
instance
|
||
≈-equiv : IsEquivalence (A × B) _≈_
|
||
≈-equiv = record
|
||
{ ≈-refl = λ {p} → (≈₁-refl , ≈₂-refl)
|
||
; ≈-sym = λ {p₁} {p₂} (a₁≈a₂ , b₁≈b₂) → (≈₁-sym a₁≈a₂ , ≈₂-sym b₁≈b₂)
|
||
; ≈-trans = λ {p₁} {p₂} {p₃} (a₁≈a₂ , b₁≈b₂) (a₂≈a₃ , b₂≈b₃) →
|
||
( ≈₁-trans a₁≈a₂ a₂≈a₃ , ≈₂-trans b₁≈b₂ b₂≈b₃ )
|
||
}
|
||
|
||
_⊔_ : A × B → A × B → A × B
|
||
(a₁ , b₁) ⊔ (a₂ , b₂) = (a₁ ⊔₁ a₂ , b₁ ⊔₂ b₂)
|
||
|
||
_⊓_ : A × B → A × B → A × B
|
||
(a₁ , b₁) ⊓ (a₂ , b₂) = (a₁ ⊓₁ a₂ , b₁ ⊓₂ b₂)
|
||
|
||
private module ProdIsSemilattice (f₁ : A → A → A) (f₂ : B → B → B) (sA : IsSemilattice A _≈₁_ f₁) (sB : IsSemilattice B _≈₂_ f₂) where
|
||
isSemilattice : IsSemilattice (A × B) _≈_ (λ (a₁ , b₁) (a₂ , b₂) → (f₁ a₁ a₂ , f₂ b₁ b₂))
|
||
isSemilattice = record
|
||
{ ≈-equiv = ≈-equiv
|
||
; ≈-⊔-cong = λ (a₁≈a₂ , b₁≈b₂) (a₃≈a₄ , b₃≈b₄) →
|
||
( IsSemilattice.≈-⊔-cong sA a₁≈a₂ a₃≈a₄
|
||
, IsSemilattice.≈-⊔-cong sB b₁≈b₂ b₃≈b₄
|
||
)
|
||
; ⊔-assoc = λ (a₁ , b₁) (a₂ , b₂) (a₃ , b₃) →
|
||
( IsSemilattice.⊔-assoc sA a₁ a₂ a₃
|
||
, IsSemilattice.⊔-assoc sB b₁ b₂ b₃
|
||
)
|
||
; ⊔-comm = λ (a₁ , b₁) (a₂ , b₂) →
|
||
( IsSemilattice.⊔-comm sA a₁ a₂
|
||
, IsSemilattice.⊔-comm sB b₁ b₂
|
||
)
|
||
; ⊔-idemp = λ (a , b) →
|
||
( IsSemilattice.⊔-idemp sA a
|
||
, IsSemilattice.⊔-idemp sB b
|
||
)
|
||
}
|
||
|
||
instance
|
||
isJoinSemilattice : IsSemilattice (A × B) _≈_ _⊔_
|
||
isJoinSemilattice = ProdIsSemilattice.isSemilattice _⊔₁_ _⊔₂_ joinSemilattice₁ joinSemilattice₂
|
||
|
||
isMeetSemilattice : IsSemilattice (A × B) _≈_ _⊓_
|
||
isMeetSemilattice = ProdIsSemilattice.isSemilattice _⊓₁_ _⊓₂_ meetSemilattice₁ meetSemilattice₂
|
||
|
||
isLattice : IsLattice (A × B) _≈_ _⊔_ _⊓_
|
||
isLattice = record
|
||
{ joinSemilattice = isJoinSemilattice
|
||
; meetSemilattice = isMeetSemilattice
|
||
; absorb-⊔-⊓ = λ (a₁ , b₁) (a₂ , b₂) →
|
||
( IsLattice.absorb-⊔-⊓ lA a₁ a₂
|
||
, IsLattice.absorb-⊔-⊓ lB b₁ b₂
|
||
)
|
||
; absorb-⊓-⊔ = λ (a₁ , b₁) (a₂ , b₂) →
|
||
( IsLattice.absorb-⊓-⊔ lA a₁ a₂
|
||
, IsLattice.absorb-⊓-⊔ lB b₁ b₂
|
||
)
|
||
}
|
||
|
||
lattice : Lattice (A × B)
|
||
lattice = record
|
||
{ _≈_ = _≈_
|
||
; _⊔_ = _⊔_
|
||
; _⊓_ = _⊓_
|
||
; isLattice = isLattice
|
||
}
|
||
|
||
module _ {{≈₁-Decidable : IsDecidable _≈₁_}} {{≈₂-Decidable : IsDecidable _≈₂_}} where
|
||
open IsDecidable ≈₁-Decidable using () renaming (R-dec to ≈₁-dec)
|
||
open IsDecidable ≈₂-Decidable using () renaming (R-dec to ≈₂-dec)
|
||
|
||
≈-dec : Decidable _≈_
|
||
≈-dec (a₁ , b₁) (a₂ , b₂)
|
||
with ≈₁-dec a₁ a₂ | ≈₂-dec b₁ b₂
|
||
... | yes a₁≈a₂ | yes b₁≈b₂ = yes (a₁≈a₂ , b₁≈b₂)
|
||
... | no a₁̷≈a₂ | _ = no (λ (a₁≈a₂ , _) → a₁̷≈a₂ a₁≈a₂)
|
||
... | _ | no b₁̷≈b₂ = no (λ (_ , b₁≈b₂) → b₁̷≈b₂ b₁≈b₂)
|
||
|
||
instance
|
||
≈-Decidable : IsDecidable _≈_
|
||
≈-Decidable = record { R-dec = ≈-dec }
|
||
|
||
module _ {h₁ h₂ : ℕ}
|
||
{{fhA : FixedHeight₁ h₁}} {{fhB : FixedHeight₂ h₂}} where
|
||
|
||
open import Data.Nat.Properties
|
||
open IsLattice isLattice using (_≼_; _≺_; ≺-cong)
|
||
|
||
module ChainMapping₁ = ChainMapping joinSemilattice₁ isJoinSemilattice
|
||
module ChainMapping₂ = ChainMapping joinSemilattice₂ isJoinSemilattice
|
||
|
||
module ChainA = Chain _≈₁_ ≈₁-equiv _≺₁_ ≺₁-cong
|
||
module ChainB = Chain _≈₂_ ≈₂-equiv _≺₂_ ≺₂-cong
|
||
module ProdChain = Chain _≈_ ≈-equiv _≺_ ≺-cong
|
||
|
||
open ChainA using () renaming (Chain to Chain₁; done to done₁; step to step₁; Chain-≈-cong₁ to Chain₁-≈-cong₁)
|
||
open ChainB using () renaming (Chain to Chain₂; done to done₂; step to step₂; Chain-≈-cong₁ to Chain₂-≈-cong₁)
|
||
open ProdChain using (Chain; concat; done; step)
|
||
|
||
private
|
||
a,∙-Monotonic : ∀ (a : A) → Monotonic _≼₂_ _≼_ (λ b → (a , b))
|
||
a,∙-Monotonic a {b₁} {b₂} b₁⊔b₂≈b₂ = (⊔₁-idemp a , b₁⊔b₂≈b₂)
|
||
|
||
a,∙-Preserves-≈₂ : ∀ (a : A) → (λ b → (a , b)) Preserves _≈₂_ ⟶ _≈_
|
||
a,∙-Preserves-≈₂ a {b₁} {b₂} b₁≈b₂ = (≈₁-refl , b₁≈b₂)
|
||
|
||
∙,b-Monotonic : ∀ (b : B) → Monotonic _≼₁_ _≼_ (λ a → (a , b))
|
||
∙,b-Monotonic b {a₁} {a₂} a₁⊔a₂≈a₂ = (a₁⊔a₂≈a₂ , ⊔₂-idemp b)
|
||
|
||
∙,b-Preserves-≈₁ : ∀ (b : B) → (λ a → (a , b)) Preserves _≈₁_ ⟶ _≈_
|
||
∙,b-Preserves-≈₁ b {a₁} {a₂} a₁≈a₂ = (a₁≈a₂ , ≈₂-refl)
|
||
|
||
open ChainA.Height fhA using () renaming (⊥ to ⊥₁; ⊤ to ⊤₁; longestChain to longestChain₁; bounded to bounded₁)
|
||
open ChainB.Height fhB using () renaming (⊥ to ⊥₂; ⊤ to ⊤₂; longestChain to longestChain₂; bounded to bounded₂)
|
||
|
||
unzip : ∀ {a₁ a₂ : A} {b₁ b₂ : B} {n : ℕ} → Chain (a₁ , b₁) (a₂ , b₂) n → Σ (ℕ × ℕ) (λ (n₁ , n₂) → ((Chain₁ a₁ a₂ n₁ × Chain₂ b₁ b₂ n₂) × (n ≤ n₁ + n₂)))
|
||
unzip (done (a₁≈a₂ , b₁≈b₂)) = ((0 , 0) , ((done₁ a₁≈a₂ , done₂ b₁≈b₂) , ≤-refl))
|
||
unzip {a₁} {a₂} {b₁} {b₂} {n} (step {(a₁ , b₁)} {(a , b)} ((a₁≼a , b₁≼b) , a₁b₁̷≈ab) (a≈a' , b≈b') a'b'a₂b₂)
|
||
with ≈₁-dec a₁ a | ≈₂-dec b₁ b | unzip a'b'a₂b₂
|
||
... | yes a₁≈a | yes b₁≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) = ⊥-elim (a₁b₁̷≈ab (a₁≈a , b₁≈b))
|
||
... | no a₁̷≈a | yes b₁≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) =
|
||
((suc n₁ , n₂) , ((step₁ (a₁≼a , a₁̷≈a) a≈a' c₁ , Chain₂-≈-cong₁ (≈₂-sym (≈₂-trans b₁≈b b≈b')) c₂), +-monoʳ-≤ 1 (n≤n₁+n₂)))
|
||
... | yes a₁≈a | no b₁̷≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) =
|
||
((n₁ , suc n₂) , ( (Chain₁-≈-cong₁ (≈₁-sym (≈₁-trans a₁≈a a≈a')) c₁ , step₂ (b₁≼b , b₁̷≈b) b≈b' c₂)
|
||
, subst (n ≤_) (sym (+-suc n₁ n₂)) (+-monoʳ-≤ 1 n≤n₁+n₂)
|
||
))
|
||
... | no a₁̷≈a | no b₁̷≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) =
|
||
((suc n₁ , suc n₂) , ( (step₁ (a₁≼a , a₁̷≈a) a≈a' c₁ , step₂ (b₁≼b , b₁̷≈b) b≈b' c₂)
|
||
, m≤n⇒m≤o+n 1 (subst (n ≤_) (sym (+-suc n₁ n₂)) (+-monoʳ-≤ 1 n≤n₁+n₂))
|
||
))
|
||
|
||
instance
|
||
fixedHeight : IsLattice.FixedHeight isLattice (h₁ + h₂)
|
||
fixedHeight = record
|
||
{ ⊥ = (⊥₁ , ⊥₂)
|
||
; ⊤ = (⊤₁ , ⊤₂)
|
||
; longestChain = concat
|
||
(ChainMapping₁.Chain-map (λ a → (a , ⊥₂)) (∙,b-Monotonic _) proj₁ (∙,b-Preserves-≈₁ _) longestChain₁)
|
||
(ChainMapping₂.Chain-map (λ b → (⊤₁ , b)) (a,∙-Monotonic _) proj₂ (a,∙-Preserves-≈₂ _) longestChain₂)
|
||
; bounded = λ a₁b₁a₂b₂ →
|
||
let ((n₁ , n₂) , ((a₁a₂ , b₁b₂) , n≤n₁+n₂)) = unzip a₁b₁a₂b₂
|
||
in ≤-trans n≤n₁+n₂ (+-mono-≤ (bounded₁ a₁a₂) (bounded₂ b₁b₂))
|
||
}
|
||
|
||
isFiniteHeightLattice : IsFiniteHeightLattice (A × B) (h₁ + h₂) _≈_ _⊔_ _⊓_
|
||
isFiniteHeightLattice = record
|
||
{ isLattice = isLattice
|
||
; fixedHeight = fixedHeight
|
||
}
|
||
|
||
finiteHeightLattice : FiniteHeightLattice (A × B)
|
||
finiteHeightLattice = record
|
||
{ height = h₁ + h₂
|
||
; _≈_ = _≈_
|
||
; _⊔_ = _⊔_
|
||
; _⊓_ = _⊓_
|
||
; isFiniteHeightLattice = isFiniteHeightLattice
|
||
}
|