Switch product to using instances

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2025-01-04 21:33:59 -08:00
parent 70847d51db
commit cf824dc744
2 changed files with 77 additions and 79 deletions

View File

@ -40,11 +40,11 @@ build a b (suc s) = (a , build a b s)
private
record RequiredForFixedHeight : Set (lsuc a) where
field
≈₁-Decidable : IsDecidable _≈₁_
≈₂-Decidable : IsDecidable _≈₂_
{{≈₁-Decidable}} : IsDecidable _≈₁_
{{≈₂-Decidable}} : IsDecidable _≈₂_
h₁ h₂ :
fhA : FixedHeight₁ h₁
fhB : FixedHeight₂ h₂
{{fhA}} : FixedHeight₁ h₁
{{fhB}} : FixedHeight₂ h₂
⊥₁ : A
⊥₁ = Height.⊥ fhA
@ -102,10 +102,9 @@ private
{ height = (RequiredForFixedHeight.h₁ req) + IsFiniteHeightWithBotAndDecEq.height fhlRest
; fixedHeight =
P.fixedHeight
(RequiredForFixedHeight.≈₁-Decidable req) (IsFiniteHeightWithBotAndDecEq.≈-Decidable fhlRest)
(RequiredForFixedHeight.h₁ req) (IsFiniteHeightWithBotAndDecEq.height fhlRest)
(RequiredForFixedHeight.fhA req) (IsFiniteHeightWithBotAndDecEq.fixedHeight fhlRest)
; ≈-Decidable = P.≈-Decidable (RequiredForFixedHeight.≈₁-Decidable req) (IsFiniteHeightWithBotAndDecEq.≈-Decidable fhlRest)
{{≈₂-Decidable = IsFiniteHeightWithBotAndDecEq.≈-Decidable fhlRest}}
{{fhB = IsFiniteHeightWithBotAndDecEq.fixedHeight fhlRest}}
; ≈-Decidable = P.≈-Decidable {{≈₂-Decidable = IsFiniteHeightWithBotAndDecEq.≈-Decidable fhlRest}}
; ⊥-correct =
cong ((Height.⊥ (RequiredForFixedHeight.fhA req)) ,_)
(IsFiniteHeightWithBotAndDecEq.⊥-correct fhlRest)
@ -113,12 +112,7 @@ private
}
where
everythingRest = everything k'
import Lattice.Prod
_≈₁_ (Everything._≈_ everythingRest)
_⊔₁_ (Everything._⊔_ everythingRest)
_⊓₁_ (Everything._⊓_ everythingRest)
lA (Everything.isLattice everythingRest) as P
import Lattice.Prod A (IterProd k') {{lB = Everything.isLattice everythingRest}} as P
module _ {k : } where
open Everything (everything k) using (_≈_; _⊔_; _⊓_) public

View File

@ -1,10 +1,10 @@
open import Lattice
module Lattice.Prod {a b} {A : Set a} {B : Set b}
(_≈₁_ : A A Set a) (_≈₂_ : B B Set b)
(_⊔₁_ : A A A) (_⊔₂_ : B B B)
(_⊓₁_ : A A A) (_⊓₂_ : B B B)
(lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_) (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
module Lattice.Prod {a b} (A : Set a) (B : Set b)
{_≈₁_ : A A Set a} {_≈₂_ : B B Set b}
{_⊔₁_ : A A A} {_⊔₂_ : B B B}
{_⊓₁_ : A A A} {_⊓₂_ : B B B}
{{lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_}} {{lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_}} where
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔_)
open import Data.Nat using (; _≤_; _+_; suc)
@ -40,13 +40,14 @@ open IsLattice lB using () renaming
_≈_ : A × B A × B Set (a ⊔ℓ b)
(a₁ , b₁) (a₂ , b₂) = (a₁ ≈₁ a₂) × (b₁ ≈₂ b₂)
≈-equiv : IsEquivalence (A × B) _≈_
≈-equiv = record
{ ≈-refl = λ {p} (≈₁-refl , ≈₂-refl)
; ≈-sym = λ {p₁} {p₂} (a₁≈a₂ , b₁≈b₂) (≈₁-sym a₁≈a₂ , ≈₂-sym b₁≈b₂)
; ≈-trans = λ {p₁} {p₂} {p₃} (a₁≈a₂ , b₁≈b₂) (a₂≈a₃ , b₂≈b₃)
( ≈₁-trans a₁≈a₂ a₂≈a₃ , ≈₂-trans b₁≈b₂ b₂≈b₃ )
}
instance
≈-equiv : IsEquivalence (A × B) _≈_
≈-equiv = record
{ ≈-refl = λ {p} (≈₁-refl , ≈₂-refl)
; ≈-sym = λ {p₁} {p₂} (a₁≈a₂ , b₁≈b₂) (≈₁-sym a₁≈a₂ , ≈₂-sym b₁≈b₂)
; ≈-trans = λ {p₁} {p₂} {p₃} (a₁≈a₂ , b₁≈b₂) (a₂≈a₃ , b₂≈b₃)
( ≈₁-trans a₁≈a₂ a₂≈a₃ , ≈₂-trans b₁≈b₂ b₂≈b₃ )
}
_⊔_ : A × B A × B A × B
(a₁ , b₁) (a₂ , b₂) = (a₁ ⊔₁ a₂ , b₁ ⊔₂ b₂)
@ -76,35 +77,36 @@ private module ProdIsSemilattice (f₁ : A → A → A) (f₂ : B → B → B) (
)
}
isJoinSemilattice : IsSemilattice (A × B) _≈_ _⊔_
isJoinSemilattice = ProdIsSemilattice.isSemilattice _⊔₁_ _⊔₂_ joinSemilattice₁ joinSemilattice₂
instance
isJoinSemilattice : IsSemilattice (A × B) _≈_ _⊔_
isJoinSemilattice = ProdIsSemilattice.isSemilattice _⊔₁_ _⊔₂_ joinSemilattice₁ joinSemilattice₂
isMeetSemilattice : IsSemilattice (A × B) _≈_ _⊓_
isMeetSemilattice = ProdIsSemilattice.isSemilattice _⊓₁_ _⊓₂_ meetSemilattice₁ meetSemilattice₂
isMeetSemilattice : IsSemilattice (A × B) _≈_ _⊓_
isMeetSemilattice = ProdIsSemilattice.isSemilattice _⊓₁_ _⊓₂_ meetSemilattice₁ meetSemilattice₂
isLattice : IsLattice (A × B) _≈_ _⊔_ _⊓_
isLattice = record
{ joinSemilattice = isJoinSemilattice
; meetSemilattice = isMeetSemilattice
; absorb-⊔-⊓ = λ (a₁ , b₁) (a₂ , b₂)
( IsLattice.absorb-⊔-⊓ lA a₁ a₂
, IsLattice.absorb-⊔-⊓ lB b₁ b₂
)
; absorb-⊓-⊔ = λ (a₁ , b₁) (a₂ , b₂)
( IsLattice.absorb-⊓-⊔ lA a₁ a₂
, IsLattice.absorb-⊓-⊔ lB b₁ b₂
)
}
isLattice : IsLattice (A × B) _≈_ _⊔_ _⊓_
isLattice = record
{ joinSemilattice = isJoinSemilattice
; meetSemilattice = isMeetSemilattice
; absorb-⊔-⊓ = λ (a₁ , b₁) (a₂ , b₂)
( IsLattice.absorb-⊔-⊓ lA a₁ a₂
, IsLattice.absorb-⊔-⊓ lB b₁ b₂
)
; absorb-⊓-⊔ = λ (a₁ , b₁) (a₂ , b₂)
( IsLattice.absorb-⊓-⊔ lA a₁ a₂
, IsLattice.absorb-⊓-⊔ lB b₁ b₂
)
}
lattice : Lattice (A × B)
lattice = record
{ _≈_ = _≈_
; _⊔_ = _⊔_
; _⊓_ = _⊓_
; isLattice = isLattice
}
lattice : Lattice (A × B)
lattice = record
{ _≈_ = _≈_
; _⊔_ = _⊔_
; _⊓_ = _⊓_
; isLattice = isLattice
}
module _ (≈₁-Decidable : IsDecidable _≈₁_) (≈₂-Decidable : IsDecidable _≈₂_) where
module _ {{≈₁-Decidable : IsDecidable _≈₁_}} {{≈₂-Decidable : IsDecidable _≈₂_}} where
open IsDecidable ≈₁-Decidable using () renaming (R-dec to ≈₁-dec)
open IsDecidable ≈₂-Decidable using () renaming (R-dec to ≈₂-dec)
@ -115,11 +117,12 @@ module _ (≈₁-Decidable : IsDecidable _≈₁_) (≈₂-Decidable : IsDecidab
... | no a₁̷≈a₂ | _ = no (λ (a₁≈a₂ , _) a₁̷≈a₂ a₁≈a₂)
... | _ | no b₁̷≈b₂ = no (λ (_ , b₁≈b₂) b₁̷≈b₂ b₁≈b₂)
≈-Decidable : IsDecidable _≈_
≈-Decidable = record { R-dec = ≈-dec }
instance
≈-Decidable : IsDecidable _≈_
≈-Decidable = record { R-dec = ≈-dec }
module _ (h h₂ : )
(fhA : FixedHeight₁ h₁) (fhB : FixedHeight₂ h₂) where
module _ {h h₂ : }
{{fhA : FixedHeight₁ h₁}} {{fhB : FixedHeight₂ h₂}} where
open import Data.Nat.Properties
open IsLattice isLattice using (_≼_; _≺_; ≺-cong)
@ -167,29 +170,30 @@ module _ (≈₁-Decidable : IsDecidable _≈₁_) (≈₂-Decidable : IsDecidab
, m≤n⇒m≤o+n 1 (subst (n ≤_) (sym (+-suc n₁ n₂)) (+-monoʳ-≤ 1 n≤n₁+n₂))
))
fixedHeight : IsLattice.FixedHeight isLattice (h₁ + h₂)
fixedHeight = record
{ = (⊥₁ , ⊥₂)
; = (⊤₁ , ⊤₂)
; longestChain = concat
(ChainMapping₁.Chain-map (λ a (a , ⊥₂)) (∙,b-Monotonic _) proj₁ (∙,b-Preserves-≈₁ _) longestChain₁)
(ChainMapping₂.Chain-map (λ b (⊤₁ , b)) (a,∙-Monotonic _) proj₂ (a,∙-Preserves-≈₂ _) longestChain₂)
; bounded = λ a₁b₁a₂b₂
let ((n₁ , n₂) , ((a₁a₂ , b₁b₂) , n≤n₁+n₂)) = unzip a₁b₁a₂b₂
in ≤-trans n≤n₁+n₂ (+-mono-≤ (bounded₁ a₁a₂) (bounded₂ b₁b₂))
}
instance
fixedHeight : IsLattice.FixedHeight isLattice (h₁ + h₂)
fixedHeight = record
{ = (⊥₁ , ⊥₂)
; = (⊤₁ , ⊤₂)
; longestChain = concat
(ChainMapping₁.Chain-map (λ a (a , ⊥₂)) (∙,b-Monotonic _) proj₁ (∙,b-Preserves-≈₁ _) longestChain₁)
(ChainMapping₂.Chain-map (λ b (⊤₁ , b)) (a,∙-Monotonic _) proj₂ (a,∙-Preserves-≈₂ _) longestChain₂)
; bounded = λ a₁b₁a₂b₂
let ((n₁ , n₂) , ((a₁a₂ , b₁b₂) , n≤n₁+n₂)) = unzip a₁b₁a₂b₂
in ≤-trans n≤n₁+n₂ (+-mono-≤ (bounded₁ a₁a₂) (bounded₂ b₁b₂))
}
isFiniteHeightLattice : IsFiniteHeightLattice (A × B) (h₁ + h₂) _≈_ _⊔_ _⊓_
isFiniteHeightLattice = record
{ isLattice = isLattice
; fixedHeight = fixedHeight
}
isFiniteHeightLattice : IsFiniteHeightLattice (A × B) (h₁ + h₂) _≈_ _⊔_ _⊓_
isFiniteHeightLattice = record
{ isLattice = isLattice
; fixedHeight = fixedHeight
}
finiteHeightLattice : FiniteHeightLattice (A × B)
finiteHeightLattice = record
{ height = h₁ + h₂
; _≈_ = _≈_
; _⊔_ = _⊔_
; _⊓_ = _⊓_
; isFiniteHeightLattice = isFiniteHeightLattice
}
finiteHeightLattice : FiniteHeightLattice (A × B)
finiteHeightLattice = record
{ height = h₁ + h₂
; _≈_ = _≈_
; _⊔_ = _⊔_
; _⊓_ = _⊓_
; isFiniteHeightLattice = isFiniteHeightLattice
}