169 lines
6.4 KiB
Agda
169 lines
6.4 KiB
Agda
open import Lattice
|
||
open import Data.Unit using (⊤)
|
||
|
||
-- Due to universe levels, it becomes relatively annoying to handle the case
|
||
-- where the levels of A and B are not the same. For the time being, constrain
|
||
-- them to be the same.
|
||
|
||
module Lattice.IterProd {a} (A B : Set a)
|
||
{_≈₁_ : A → A → Set a} {_≈₂_ : B → B → Set a}
|
||
{_⊔₁_ : A → A → A} {_⊔₂_ : B → B → B}
|
||
{_⊓₁_ : A → A → A} {_⊓₂_ : B → B → B}
|
||
{{lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_}} {{lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_}} (dummy : ⊤) where
|
||
|
||
open import Agda.Primitive using (lsuc)
|
||
open import Data.Nat using (ℕ; zero; suc; _+_)
|
||
open import Data.Product using (_×_; _,_; proj₁; proj₂)
|
||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; cong)
|
||
open import Utils using (iterate)
|
||
open import Chain using (Height)
|
||
|
||
open IsLattice lA renaming (FixedHeight to FixedHeight₁)
|
||
open IsLattice lB renaming (FixedHeight to FixedHeight₂)
|
||
|
||
IterProd : ℕ → Set a
|
||
IterProd k = iterate k (λ t → A × t) B
|
||
|
||
-- To make iteration more convenient, package the definitions in Lattice
|
||
-- records, perform the recursion, and unpackage.
|
||
--
|
||
|
||
-- If we prove isLattice and isFiniteHeightLattice by induction separately,
|
||
-- we lose the connection between the operations (which should be the same)
|
||
-- that are built up by the two iterations. So, do everything in one iteration.
|
||
-- This requires some odd code.
|
||
|
||
build : A → B → (k : ℕ) → IterProd k
|
||
build _ b zero = b
|
||
build a b (suc s) = (a , build a b s)
|
||
|
||
private
|
||
record RequiredForFixedHeight : Set (lsuc a) where
|
||
field
|
||
{{≈₁-Decidable}} : IsDecidable _≈₁_
|
||
{{≈₂-Decidable}} : IsDecidable _≈₂_
|
||
h₁ h₂ : ℕ
|
||
{{fhA}} : FixedHeight₁ h₁
|
||
{{fhB}} : FixedHeight₂ h₂
|
||
|
||
⊥₁ : A
|
||
⊥₁ = Height.⊥ fhA
|
||
|
||
⊥₂ : B
|
||
⊥₂ = Height.⊥ fhB
|
||
|
||
⊥k : ∀ (k : ℕ) → IterProd k
|
||
⊥k = build ⊥₁ ⊥₂
|
||
|
||
record IsFiniteHeightWithBotAndDecEq {A : Set a} {_≈_ : A → A → Set a} {_⊔_ : A → A → A} {_⊓_ : A → A → A} (isLattice : IsLattice A _≈_ _⊔_ _⊓_) (⊥ : A) : Set (lsuc a) where
|
||
field
|
||
height : ℕ
|
||
fixedHeight : IsLattice.FixedHeight isLattice height
|
||
≈-Decidable : IsDecidable _≈_
|
||
|
||
⊥-correct : Height.⊥ fixedHeight ≡ ⊥
|
||
|
||
record Everything (k : ℕ) : Set (lsuc a) where
|
||
T = IterProd k
|
||
|
||
field
|
||
_≈_ : T → T → Set a
|
||
_⊔_ : T → T → T
|
||
_⊓_ : T → T → T
|
||
|
||
isLattice : IsLattice T _≈_ _⊔_ _⊓_
|
||
isFiniteHeightIfSupported :
|
||
∀ (req : RequiredForFixedHeight) →
|
||
IsFiniteHeightWithBotAndDecEq isLattice (RequiredForFixedHeight.⊥k req k)
|
||
|
||
everything : ∀ (k : ℕ) → Everything k
|
||
everything 0 = record
|
||
{ _≈_ = _≈₂_
|
||
; _⊔_ = _⊔₂_
|
||
; _⊓_ = _⊓₂_
|
||
; isLattice = lB
|
||
; isFiniteHeightIfSupported = λ req → record
|
||
{ height = RequiredForFixedHeight.h₂ req
|
||
; fixedHeight = RequiredForFixedHeight.fhB req
|
||
; ≈-Decidable = RequiredForFixedHeight.≈₂-Decidable req
|
||
; ⊥-correct = refl
|
||
}
|
||
}
|
||
everything (suc k') = record
|
||
{ _≈_ = P._≈_
|
||
; _⊔_ = P._⊔_
|
||
; _⊓_ = P._⊓_
|
||
; isLattice = P.isLattice
|
||
; isFiniteHeightIfSupported = λ req →
|
||
let
|
||
fhlRest = Everything.isFiniteHeightIfSupported everythingRest req
|
||
in
|
||
record
|
||
{ height = (RequiredForFixedHeight.h₁ req) + IsFiniteHeightWithBotAndDecEq.height fhlRest
|
||
; fixedHeight =
|
||
P.fixedHeight
|
||
{{≈₂-Decidable = IsFiniteHeightWithBotAndDecEq.≈-Decidable fhlRest}}
|
||
{{fhB = IsFiniteHeightWithBotAndDecEq.fixedHeight fhlRest}}
|
||
; ≈-Decidable = P.≈-Decidable {{≈₂-Decidable = IsFiniteHeightWithBotAndDecEq.≈-Decidable fhlRest}}
|
||
; ⊥-correct =
|
||
cong ((Height.⊥ (RequiredForFixedHeight.fhA req)) ,_)
|
||
(IsFiniteHeightWithBotAndDecEq.⊥-correct fhlRest)
|
||
}
|
||
}
|
||
where
|
||
everythingRest = everything k'
|
||
import Lattice.Prod A (IterProd k') {{lB = Everything.isLattice everythingRest}} as P
|
||
|
||
module _ {k : ℕ} where
|
||
open Everything (everything k) using (_≈_; _⊔_; _⊓_) public
|
||
open Lattice.IsLattice (Everything.isLattice (everything k)) public
|
||
|
||
instance
|
||
isLattice = Everything.isLattice (everything k)
|
||
|
||
lattice : Lattice (IterProd k)
|
||
lattice = record
|
||
{ _≈_ = _≈_
|
||
; _⊔_ = _⊔_
|
||
; _⊓_ = _⊓_
|
||
; isLattice = isLattice
|
||
}
|
||
|
||
module _ {{≈₁-Decidable : IsDecidable _≈₁_}} {{≈₂-Decidable : IsDecidable _≈₂_}}
|
||
{h₁ h₂ : ℕ}
|
||
{{fhA : FixedHeight₁ h₁}} {{fhB : FixedHeight₂ h₂}} where
|
||
|
||
private
|
||
isFiniteHeightWithBotAndDecEq =
|
||
Everything.isFiniteHeightIfSupported (everything k)
|
||
record
|
||
{ ≈₁-Decidable = ≈₁-Decidable
|
||
; ≈₂-Decidable = ≈₂-Decidable
|
||
; h₁ = h₁
|
||
; h₂ = h₂
|
||
; fhA = fhA
|
||
; fhB = fhB
|
||
}
|
||
open IsFiniteHeightWithBotAndDecEq isFiniteHeightWithBotAndDecEq using (height; ⊥-correct)
|
||
|
||
instance
|
||
fixedHeight = IsFiniteHeightWithBotAndDecEq.fixedHeight isFiniteHeightWithBotAndDecEq
|
||
|
||
isFiniteHeightLattice = record
|
||
{ isLattice = isLattice
|
||
; fixedHeight = fixedHeight
|
||
}
|
||
|
||
finiteHeightLattice : FiniteHeightLattice (IterProd k)
|
||
finiteHeightLattice = record
|
||
{ height = height
|
||
; _≈_ = _≈_
|
||
; _⊔_ = _⊔_
|
||
; _⊓_ = _⊓_
|
||
; isFiniteHeightLattice = isFiniteHeightLattice
|
||
}
|
||
|
||
⊥-built : Height.⊥ fixedHeight ≡ (build (Height.⊥ fhA) (Height.⊥ fhB) k)
|
||
⊥-built = ⊥-correct
|
||
|