agda-spa/Analysis/Sign.agda

310 lines
14 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module Analysis.Sign where
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
open import Data.Nat using (suc)
open import Data.Product using (_×_; proj₁; _,_)
open import Data.List using (List; _∷_; []; foldr; cartesianProduct; cartesianProductWith)
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst)
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Data.Unit using ()
open import Function using (_∘_)
open import Language
open import Lattice
open import Utils using (Pairwise)
open import Showable using (Showable; show)
import Lattice.FiniteValueMap
data Sign : Set where
+ : Sign
- : Sign
0ˢ : Sign
instance
showable : Showable Sign
showable = record
{ show = (λ
{ + → "+"
; - → "-"
; 0ˢ → "0"
})
}
-- g for siGn; s is used for strings and i is not very descriptive.
_≟ᵍ_ : IsDecidable (_≡_ {_} {Sign})
_≟ᵍ_ + + = yes refl
_≟ᵍ_ + - = no (λ ())
_≟ᵍ_ + 0ˢ = no (λ ())
_≟ᵍ_ - + = no (λ ())
_≟ᵍ_ - - = yes refl
_≟ᵍ_ - 0ˢ = no (λ ())
_≟ᵍ_ 0ˢ + = no (λ ())
_≟ᵍ_ 0ˢ - = no (λ ())
_≟ᵍ_ 0ˢ 0ˢ = yes refl
-- embelish 'sign' with a top and bottom element.
open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵍ_ as AB
using ()
renaming
( AboveBelow to SignLattice
; ≈-dec to ≈ᵍ-dec
; ⊥ to ⊥ᵍ
; to ⊤ᵍ
; [_] to [_]ᵍ
; _≈_ to _≈ᵍ_
; ≈-⊥-⊥ to ≈ᵍ-⊥ᵍ-⊥ᵍ
; ≈-- to ≈ᵍ-⊤ᵍ-⊤ᵍ
; ≈-lift to ≈ᵍ-lift
; ≈-refl to ≈ᵍ-refl
)
-- 'sign' has no underlying lattice structure, so use the 'plain' above-below lattice.
open AB.Plain 0ˢ using ()
renaming
( finiteHeightLattice to finiteHeightLatticeᵍ
; isLattice to isLatticeᵍ
; fixedHeight to fixedHeightᵍ
; _≼_ to _≼ᵍ_
; _⊔_ to _⊔ᵍ_
)
open IsLattice isLatticeᵍ using ()
renaming
( ≼-trans to ≼ᵍ-trans
)
plus : SignLattice → SignLattice → SignLattice
plus ⊥ᵍ _ = ⊥ᵍ
plus _ ⊥ᵍ = ⊥ᵍ
plus ⊤ᵍ _ = ⊤ᵍ
plus _ ⊤ᵍ = ⊤ᵍ
plus [ + ]ᵍ [ + ]ᵍ = [ + ]ᵍ
plus [ + ]ᵍ [ - ]ᵍ = ⊤ᵍ
plus [ + ]ᵍ [ 0ˢ ]ᵍ = [ + ]ᵍ
plus [ - ]ᵍ [ + ]ᵍ = ⊤ᵍ
plus [ - ]ᵍ [ - ]ᵍ = [ - ]ᵍ
plus [ - ]ᵍ [ 0ˢ ]ᵍ = [ - ]ᵍ
plus [ 0ˢ ]ᵍ [ + ]ᵍ = [ + ]ᵍ
plus [ 0ˢ ]ᵍ [ - ]ᵍ = [ - ]ᵍ
plus [ 0ˢ ]ᵍ [ 0ˢ ]ᵍ = [ 0ˢ ]ᵍ
-- this is incredibly tedious: 125 cases per monotonicity proof, and tactics
-- are hard. postulate for now.
postulate plus-Monoˡ : ∀ (s₂ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ → plus s₁ s₂)
postulate plus-Monoʳ : ∀ (s₁ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (plus s₁)
minus : SignLattice → SignLattice → SignLattice
minus ⊥ᵍ _ = ⊥ᵍ
minus _ ⊥ᵍ = ⊥ᵍ
minus ⊤ᵍ _ = ⊤ᵍ
minus _ ⊤ᵍ = ⊤ᵍ
minus [ + ]ᵍ [ + ]ᵍ = ⊤ᵍ
minus [ + ]ᵍ [ - ]ᵍ = [ + ]ᵍ
minus [ + ]ᵍ [ 0ˢ ]ᵍ = [ + ]ᵍ
minus [ - ]ᵍ [ + ]ᵍ = [ - ]ᵍ
minus [ - ]ᵍ [ - ]ᵍ = ⊤ᵍ
minus [ - ]ᵍ [ 0ˢ ]ᵍ = [ - ]ᵍ
minus [ 0ˢ ]ᵍ [ + ]ᵍ = [ - ]ᵍ
minus [ 0ˢ ]ᵍ [ - ]ᵍ = [ + ]ᵍ
minus [ 0ˢ ]ᵍ [ 0ˢ ]ᵍ = [ 0ˢ ]ᵍ
postulate minus-Monoˡ : ∀ (s₂ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ → minus s₁ s₂)
postulate minus-Monoʳ : ∀ (s₁ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (minus s₁)
module WithProg (prog : Program) where
open Program prog
-- The variable -> sign map is a finite value-map with keys strings. Use a bundle to avoid explicitly specifying operators.
module VariableSignsFiniteMap = Lattice.FiniteValueMap.WithKeys _≟ˢ_ isLatticeᵍ vars
open VariableSignsFiniteMap
using ()
renaming
( FiniteMap to VariableSigns
; isLattice to isLatticeᵛ
; _≈_ to _≈ᵛ_
; _⊔_ to _⊔ᵛ_
; _≼_ to _≼ᵛ_
; ≈₂-dec⇒≈-dec to ≈ᵍ-dec⇒≈ᵛ-dec
; _∈_ to _∈ᵛ_
; _∈k_ to _∈kᵛ_
; _updating_via_ to _updatingᵛ_via_
; locate to locateᵛ
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ
)
open IsLattice isLatticeᵛ
using ()
renaming
( ⊔-Monotonicˡ to ⊔ᵛ-Monotonicˡ
; ⊔-Monotonicʳ to ⊔ᵛ-Monotonicʳ
; ⊔-idemp to ⊔ᵛ-idemp
)
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟ˢ_ isLatticeᵍ vars-Unique ≈ᵍ-dec _ fixedHeightᵍ
using ()
renaming
( isFiniteHeightLattice to isFiniteHeightLatticeᵛ
)
≈ᵛ-dec = ≈ᵍ-dec⇒≈ᵛ-dec ≈ᵍ-dec
joinSemilatticeᵛ = IsFiniteHeightLattice.joinSemilattice isFiniteHeightLatticeᵛ
fixedHeightᵛ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵛ
⊥ᵛ = proj₁ (proj₁ (proj₁ fixedHeightᵛ))
-- Finally, the map we care about is (state -> (variables -> sign)). Bring that in.
module StateVariablesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟_ isLatticeᵛ states
open StateVariablesFiniteMap
using (_[_]; m₁≼m₂⇒m₁[ks]≼m₂[ks])
renaming
( FiniteMap to StateVariables
; isLattice to isLatticeᵐ
; _∈k_ to _∈kᵐ_
; locate to locateᵐ
; _≼_ to _≼ᵐ_
; ≈₂-dec⇒≈-dec to ≈ᵛ-dec⇒≈ᵐ-dec
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ
)
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟_ isLatticeᵛ states-Unique ≈ᵛ-dec _ fixedHeightᵛ
using ()
renaming
( isFiniteHeightLattice to isFiniteHeightLatticeᵐ
)
≈ᵐ-dec = ≈ᵛ-dec⇒≈ᵐ-dec ≈ᵛ-dec
fixedHeightᵐ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵐ
-- build up the 'join' function, which follows from Exercise 4.26's
--
-- L₁ → (A → L₂)
--
-- Construction, with L₁ = (A → L₂), and f = id
joinForKey : State → StateVariables → VariableSigns
joinForKey k states = foldr _⊔ᵛ_ ⊥ᵛ (states [ incoming k ])
-- The per-key join is made up of map key accesses (which are monotonic)
-- and folds using the join operation (also monotonic)
joinForKey-Mono : ∀ (k : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (joinForKey k)
joinForKey-Mono k {fm₁} {fm₂} fm₁≼fm₂ =
foldr-Mono joinSemilatticeᵛ joinSemilatticeᵛ (fm₁ [ incoming k ]) (fm₂ [ incoming k ]) _⊔ᵛ_ ⊥ᵛ ⊥ᵛ
(m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ (incoming k) fm₁≼fm₂)
(⊔ᵛ-idemp ⊥ᵛ) ⊔ᵛ-Monotonicʳ ⊔ᵛ-Monotonicˡ
-- The name f' comes from the formulation of Exercise 4.26.
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) joinForKey joinForKey-Mono states
renaming
( f' to joinAll
; f'-Monotonic to joinAll-Mono
)
-- With 'join' in hand, we need to perform abstract evaluation.
vars-in-Map : ∀ (k : String) (vs : VariableSigns) →
k ∈ˡ vars → k ∈kᵛ vs
vars-in-Map k vs@(m , kvs≡vars) k∈vars rewrite kvs≡vars = k∈vars
states-in-Map : ∀ (s : State) (sv : StateVariables) → s ∈kᵐ sv
states-in-Map s sv@(m , ksv≡states) rewrite ksv≡states = states-complete s
eval : ∀ (e : Expr) → (∀ k → k ∈ᵉ e → k ∈ˡ vars) → VariableSigns → SignLattice
eval (e₁ + e₂) k∈e⇒k∈vars vs =
plus (eval e₁ (λ k k∈e₁ → k∈e⇒k∈vars k (in⁺₁ k∈e₁)) vs)
(eval e₂ (λ k k∈e₂ → k∈e⇒k∈vars k (in⁺₂ k∈e₂)) vs)
eval (e₁ - e₂) k∈e⇒k∈vars vs =
minus (eval e₁ (λ k k∈e₁ → k∈e⇒k∈vars k (in⁻₁ k∈e₁)) vs)
(eval e₂ (λ k k∈e₂ → k∈e⇒k∈vars k (in⁻₂ k∈e₂)) vs)
eval (` k) k∈e⇒k∈vars vs = proj₁ (locateᵛ {k} {vs} (vars-in-Map k vs (k∈e⇒k∈vars k here)))
eval (# 0) _ _ = [ 0ˢ ]ᵍ
eval (# (suc n')) _ _ = [ + ]ᵍ
eval-Mono : ∀ (e : Expr) (k∈e⇒k∈vars : ∀ k → k ∈ᵉ e → k ∈ˡ vars) → Monotonic _≼ᵛ_ _≼ᵍ_ (eval e k∈e⇒k∈vars)
eval-Mono (e₁ + e₂) k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂ =
let
-- TODO: can this be done with less boilerplate?
k∈e₁⇒k∈vars = λ k k∈e₁ → k∈e⇒k∈vars k (in⁺₁ k∈e₁)
k∈e₂⇒k∈vars = λ k k∈e₂ → k∈e⇒k∈vars k (in⁺₂ k∈e₂)
g₁vs₁ = eval e₁ k∈e₁⇒k∈vars vs₁
g₂vs₁ = eval e₂ k∈e₂⇒k∈vars vs₁
g₁vs₂ = eval e₁ k∈e₁⇒k∈vars vs₂
g₂vs₂ = eval e₂ k∈e₂⇒k∈vars vs₂
in
≼ᵍ-trans
{plus g₁vs₁ g₂vs₁} {plus g₁vs₂ g₂vs₁} {plus g₁vs₂ g₂vs₂}
(plus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ k∈e₁⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂))
(plus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ k∈e₂⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂))
eval-Mono (e₁ - e₂) k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂ =
let
-- TODO: here too -- can this be done with less boilerplate?
k∈e₁⇒k∈vars = λ k k∈e₁ → k∈e⇒k∈vars k (in⁻₁ k∈e₁)
k∈e₂⇒k∈vars = λ k k∈e₂ → k∈e⇒k∈vars k (in⁻₂ k∈e₂)
g₁vs₁ = eval e₁ k∈e₁⇒k∈vars vs₁
g₂vs₁ = eval e₂ k∈e₂⇒k∈vars vs₁
g₁vs₂ = eval e₁ k∈e₁⇒k∈vars vs₂
g₂vs₂ = eval e₂ k∈e₂⇒k∈vars vs₂
in
≼ᵍ-trans
{minus g₁vs₁ g₂vs₁} {minus g₁vs₂ g₂vs₁} {minus g₁vs₂ g₂vs₂}
(minus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ k∈e₁⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂))
(minus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ k∈e₂⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂))
eval-Mono (` k) k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂ =
let
(v₁ , k,v₁∈vs₁) = locateᵛ {k} {vs₁} (vars-in-Map k vs₁ (k∈e⇒k∈vars k here))
(v₂ , k,v₂∈vs₂) = locateᵛ {k} {vs₂} (vars-in-Map k vs₂ (k∈e⇒k∈vars k here))
in
m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ vs₁ vs₂ vs₁≼vs₂ k,v₁∈vs₁ k,v₂∈vs₂
eval-Mono (# 0) _ _ = ≈ᵍ-refl
eval-Mono (# (suc n')) _ _ = ≈ᵍ-refl
private module _ (k : String) (e : Expr) (k∈e⇒k∈vars : ∀ k → k ∈ᵉ e → k ∈ˡ vars) where
open VariableSignsFiniteMap.GeneralizedUpdate vars isLatticeᵛ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) (λ _ → eval e k∈e⇒k∈vars) (λ _ {vs₁} {vs₂} vs₁≼vs₂ → eval-Mono e k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂) (k ∷ [])
renaming
( f' to updateVariablesFromExpression
; f'-Monotonic to updateVariablesFromExpression-Mono
)
public
updateVariablesForState : State → StateVariables → VariableSigns
updateVariablesForState s sv
-- More weirdness here. Apparently, capturing the with-equality proof
-- using 'in p' makes code that reasons about this function (below)
-- throw ill-typed with-abstraction errors. Instead, make use of the
-- fact that later with-clauses are generalized over earlier ones to
-- construct a specialization of vars-complete for (code s).
with code s | (λ k → vars-complete {k} s)
... | k ← e | k∈codes⇒k∈vars =
let
(vs , s,vs∈sv) = locateᵐ {s} {sv} (states-in-Map s sv)
in
updateVariablesFromExpression k e (λ k k∈e → k∈codes⇒k∈vars k (in←₂ k∈e)) vs
updateVariablesForState-Monoʳ : ∀ (s : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (updateVariablesForState s)
updateVariablesForState-Monoʳ s {sv₁} {sv₂} sv₁≼sv₂
with code s | (λ k → vars-complete {k} s)
... | k ← e | k∈codes⇒k∈vars =
let
(vs₁ , s,vs₁∈sv₁) = locateᵐ {s} {sv₁} (states-in-Map s sv₁)
(vs₂ , s,vs₂∈sv₂) = locateᵐ {s} {sv₂} (states-in-Map s sv₂)
vs₁≼vs₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ sv₁ sv₂ sv₁≼sv₂ s,vs₁∈sv₁ s,vs₂∈sv₂
in
updateVariablesFromExpression-Mono k e (λ k k∈e → k∈codes⇒k∈vars k (in←₂ k∈e)) {vs₁} {vs₂} vs₁≼vs₂
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) updateVariablesForState updateVariablesForState-Monoʳ states
renaming
( f' to updateAll
; f'-Monotonic to updateAll-Mono
)
analyze : StateVariables → StateVariables
analyze = updateAll ∘ joinAll
analyze-Mono : Monotonic _≼ᵐ_ _≼ᵐ_ analyze
analyze-Mono {sv₁} {sv₂} sv₁≼sv₂ = updateAll-Mono {joinAll sv₁} {joinAll sv₂} (joinAll-Mono {sv₁} {sv₂} sv₁≼sv₂)
open import Fixedpoint ≈ᵐ-dec isFiniteHeightLatticeᵐ analyze (λ {m₁} {m₂} m₁≼m₂ → analyze-Mono {m₁} {m₂} m₁≼m₂)
using ()
renaming (aᶠ to signs)
-- Debugging code: print the resulting map.
output = show signs