Use a different representation of values and prove equivalence of UCC evalutor

This commit is contained in:
2021-11-28 01:08:56 -08:00
parent d72e64c7f9
commit 30c395151d
3 changed files with 335 additions and 47 deletions

View File

@@ -1,22 +1,22 @@
Require Import Coq.Lists.List.
Require Import Dawn.
Require Import DawnV2.
Require Import Coq.Program.Equality.
From Ltac2 Require Import Ltac2.
Inductive step_result :=
| err
| middle (e : expr) (s : list expr)
| final (s : list expr).
| middle (e : expr) (s : value_stack)
| final (s : value_stack).
Fixpoint eval_step (s : list expr) (e : expr) : step_result :=
Fixpoint eval_step (s : value_stack) (e : expr) : step_result :=
match e, s with
| e_int swap, v' :: v :: vs => final (v :: v' :: vs)
| e_int clone, v :: vs => final (v :: v :: vs)
| e_int drop, v :: vs => final vs
| e_int quote, v :: vs => final (e_quote v :: vs)
| e_int compose, (e_quote v2) :: (e_quote v1) :: vs => final (e_quote (e_comp v1 v2) :: vs)
| e_int apply, (e_quote v1) :: vs => middle v1 vs
| e_quote e', vs => final (e_quote e' :: vs)
| e_int quote, v :: vs => final (v_quote (value_to_expr v) :: vs)
| e_int compose, (v_quote v2) :: (v_quote v1) :: vs => final (v_quote (e_comp v1 v2) :: vs)
| e_int apply, (v_quote v1) :: vs => middle v1 vs
| e_quote e', vs => final (v_quote e' :: vs)
| e_comp e1 e2, vs =>
match eval_step vs e1 with
| final vs' => middle e2 vs'
@@ -26,12 +26,10 @@ Fixpoint eval_step (s : list expr) (e : expr) : step_result :=
| _, _ => err
end.
Definition strip_value_list (vs : value_stack) := @map value expr (@projT1 expr IsValue) vs.
Theorem eval_step_correct : forall (e : expr) (vs vs' : value_stack), Sem_expr vs e vs' ->
(eval_step (strip_value_list vs) e = final (strip_value_list vs')) \/
(eval_step vs e = final vs') \/
(exists (ei : expr) (vsi : value_stack),
eval_step (strip_value_list vs) e = middle ei (strip_value_list vsi) /\
eval_step vs e = middle ei vsi /\
Sem_expr vsi ei vs').
Proof.
intros e vs vs' Hsem.
@@ -39,9 +37,9 @@ Proof.
induction Hsem.
- inversion H; (* The expression is just an intrnsic. *)
(* Dismiss all the straightforward "final" cases,
of which most intrinsics are *)
of which most intrinsics are. *)
try (left; reflexivity).
(* We are in an intermediate / middle case. *)
(* Only apply remains; We are in an intermediate / middle case. *)
right.
(* The semantics guarantee that the expression in the
quote evaluates to the final state. *)
@@ -63,26 +61,26 @@ Proof.
eapply Sem_e_comp. apply Hsem'. apply Hsem2.
Qed.
Inductive eval_chain (s : list expr) (e : expr) (s' : list expr) : Prop :=
| chain_final (P : eval_step s e = final s')
| chain_middle (ei : expr) (si : list expr)
(P : eval_step s e = middle ei si) (rest : eval_chain si ei s').
Inductive eval_chain (vs : value_stack) (e : expr) (vs' : value_stack) : Prop :=
| chain_final (P : eval_step vs e = final vs')
| chain_middle (ei : expr) (vsi : value_stack)
(P : eval_step vs e = middle ei vsi) (rest : eval_chain vsi ei vs').
Lemma eval_chain_merge : forall (e1 e2 : expr) (s s' s'' : list expr),
eval_chain s e1 s' -> eval_chain s' e2 s'' -> eval_chain s (e_comp e1 e2) s''.
Lemma eval_chain_merge : forall (e1 e2 : expr) (vs vs' vs'' : value_stack),
eval_chain vs e1 vs' -> eval_chain vs' e2 vs'' -> eval_chain vs (e_comp e1 e2) vs''.
Proof.
intros e1 e2 s s' s'' ch1 ch2.
intros e1 e2 vs vs' vs'' ch1 ch2.
induction ch1;
eapply chain_middle; simpl; try (rewrite P); auto.
Qed.
Lemma eval_chain_split : forall (e1 e2 : expr) (s s'' : list expr),
eval_chain s (e_comp e1 e2) s'' -> exists s', (eval_chain s e1 s') /\ (eval_chain s' e2 s'').
Lemma eval_chain_split : forall (e1 e2 : expr) (vs vs'' : value_stack),
eval_chain vs (e_comp e1 e2) vs'' -> exists vs', (eval_chain vs e1 vs') /\ (eval_chain vs' e2 vs'').
Proof.
intros e1 e2 s ss'' ch.
intros e1 e2 vs vss'' ch.
ltac1:(dependent induction ch).
- simpl in P. destruct (eval_step s e1); inversion P.
- simpl in P. destruct (eval_step s e1) eqn:Hval; try (inversion P).
- simpl in P. destruct (eval_step vs e1); inversion P.
- simpl in P. destruct (eval_step vs e1) eqn:Hval; try (inversion P).
+ injection P as Hinj; subst. specialize (IHch e e2 H0) as [s'0 [ch1 ch2]].
eexists. split.
* eapply chain_middle. apply Hval. apply ch1.
@@ -93,9 +91,9 @@ Proof.
Qed.
Theorem val_step_sem : forall (e : expr) (vs vs' : value_stack),
Sem_expr vs e vs' -> eval_chain (strip_value_list vs) e (strip_value_list vs')
Sem_expr vs e vs' -> eval_chain vs e vs'
with eval_step_int : forall (i : intrinsic) (vs vs' : value_stack),
Sem_int vs i vs' -> eval_chain (strip_value_list vs) (e_int i) (strip_value_list vs').
Sem_int vs i vs' -> eval_chain vs (e_int i) vs'.
Proof.
- intros e vs vs' Hsem.
induction Hsem.
@@ -106,7 +104,7 @@ Proof.
apply chain_final. auto.
+ (* In compoition, by induction, we know that the two sub-expressions produce
proper evaluation chains. Chains can be composed (via eval_chain_merge). *)
eapply eval_chain_merge with (strip_value_list vs2); auto.
eapply eval_chain_merge with vs2; auto.
- intros i vs vs' Hsem.
(* The evaluation chain depends on the specific intrinsic in use. *)
inversion Hsem; subst;
@@ -114,15 +112,9 @@ Proof.
try (apply chain_final; auto; fail).
(* Only apply is non-final. The first step is popping the quote from the stack,
and the rest of the steps are given by the evaluation of the code in the quote. *)
apply chain_middle with e (strip_value_list vs0); auto.
apply chain_middle with e vs0; auto.
Qed.
Theorem eval_step_sem_back : forall (e : expr) (vs vs' : value_stack),
eval_chain (strip_value_list vs) e (strip_value_list vs') -> Sem_expr vs e vs'.
Proof.
(* Thoughts: the issue is with the apparent nondeterminism of evalution. *)
Admitted.
Ltac2 Type exn ::= [ | Not_intrinsic ].
Ltac2 rec destruct_n (n : int) (vs : constr) : unit :=
@@ -146,15 +138,6 @@ Ltac2 int_arity (int : constr) : int :=
Ltac2 destruct_int_stack (int : constr) (va: constr) := destruct_n (int_arity int) va.
Ltac2 ensure_valid_value_stack () := Control.enter (fun () =>
match! goal with
| [h : eval_step (strip_value_list ?a) (e_int ?b) = ?c |- _] =>
let h := Control.hyp h in
destruct_int_stack b a;
try (inversion $h; fail)
| [|- _ ] => ()
end).
Ltac2 ensure_valid_stack () := Control.enter (fun () =>
match! goal with
| [h : eval_step ?a (e_int ?b) = ?c |- _] =>
@@ -164,15 +147,77 @@ Ltac2 ensure_valid_stack () := Control.enter (fun () =>
| [|- _ ] => ()
end).
Theorem test : forall (s s': list expr), eval_step s (e_int swap) = final s' ->
exists v1 v2 s'', s = v1 :: v2 :: s'' /\ s' = v2 :: v1 :: s''.
Theorem test : forall (vs vs': value_stack), eval_step vs (e_int swap) = final vs' ->
exists v1 v2 vs'', vs = v1 :: v2 :: vs'' /\ vs' = v2 :: v1 :: vs''.
Proof.
intros s s' Heq.
ensure_valid_stack ().
simpl in Heq. injection Heq as Hinj. subst. eauto.
Qed.
Theorem eval_step_final_sem : forall (e : expr) (vs vs' : value_stack),
eval_step vs e = final vs' -> Sem_expr vs e vs'.
Proof.
intros e vs vs' Hev. destruct e.
- destruct i; ensure_valid_stack ();
(* Get rid of trivial cases that match one-to-one. *)
simpl in Hev; try (injection Hev as Hinj; subst; solve_basic ()).
+ (* compose with one quoted value *)
destruct v. inversion Hev.
+ (* compose with two quoted values. *)
destruct v; destruct v0.
injection Hev as Hinj; subst; solve_basic ().
+ (* Apply is not final. *) destruct v. inversion Hev.
- (* Quote is always final, trivially. *)
simpl in Hev. injection Hev as Hinj; subst. solve_basic ().
- (* Compose is never final. *)
simpl in Hev. destruct (eval_step vs e1); inversion Hev.
Qed.
Theorem eval_step_middle_sem : forall (e ei: expr) (vs vsi vs' : value_stack),
eval_step vs e = middle ei vsi ->
Sem_expr vsi ei vs' ->
Sem_expr vs e vs'.
Proof.
intros e. induction e; intros ei vs vsi vs' Hev Hsem.
- destruct i; ensure_valid_stack ().
+ (* compose with one quoted value. *)
destruct v. inversion Hev.
+ (* compose with two quoted values. *)
destruct v; destruct v0. inversion Hev.
+ (* Apply *)
destruct v. injection Hev as Hinj; subst.
solve_basic (). auto.
- inversion Hev.
- simpl in Hev.
destruct (eval_step vs e1) eqn:Hev1.
+ inversion Hev.
+ injection Hev as Hinj; subst. inversion Hsem; subst.
specialize (IHe1 e vs vsi vs2 Hev1 H2).
eapply Sem_e_comp. apply IHe1. apply H4.
+ injection Hev as Hinj; subst.
specialize (eval_step_final_sem e1 vs vsi Hev1) as Hsem1.
eapply Sem_e_comp. apply Hsem1. apply Hsem.
Qed.
Theorem eval_step_sem_back : forall (e : expr) (vs vs' : value_stack),
eval_chain vs e vs' -> Sem_expr vs e vs'.
Proof.
intros e vs vs' ch.
ltac1:(dependent induction ch).
- apply eval_step_final_sem. auto.
- specialize (eval_step_middle_sem e ei vs vsi vs' P IHch). auto.
Qed.
Corollary eval_step_no_sem : forall (e : expr) (vs vs' : value_stack),
~ (Sem_expr vs e vs') -> ~(eval_chain vs e vs').
Proof.
intros e vs vs' Hnsem Hch.
specialize (eval_step_sem_back _ _ _ Hch). auto.
Qed.
Require Extraction.
Require Import ExtrHaskellBasic.
Extraction Language Haskell.
Set Extraction KeepSingleton.
Extraction "UccGen.hs" expr eval_step true false or.