Compare commits
	
		
			2 Commits
		
	
	
		
			4d8d806706
			...
			216e9e89b4
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 216e9e89b4 | |||
| a1244f201a | 
							
								
								
									
										45
									
								
								assets/scss/gmachine.scss
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										45
									
								
								assets/scss/gmachine.scss
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,45 @@ | |||||||
|  | $basic-border: 1px solid #bfbfbf; | ||||||
|  | 
 | ||||||
|  | .gmachine-instruction { | ||||||
|  |     display: flex; | ||||||
|  |     border: $basic-border; | ||||||
|  |     border-radius: 2px; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | .gmachine-instruction-name { | ||||||
|  |     padding: 10px; | ||||||
|  |     border-right: $basic-border; | ||||||
|  |     flex-grow: 1; | ||||||
|  |     flex-basis: 20%; | ||||||
|  |     text-align: center; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | .gmachine-instruction-sem { | ||||||
|  |     width: 100%; | ||||||
|  |     flex-grow: 4; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | .gmachine-inner { | ||||||
|  |     border-bottom: $basic-border; | ||||||
|  |     width: 100%; | ||||||
|  | 
 | ||||||
|  |     &:last-child { | ||||||
|  |         border-bottom: none; | ||||||
|  |     } | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | .gmachine-inner-label { | ||||||
|  |     padding: 10px; | ||||||
|  |     font-weight: bold; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | .gmachine-inner-text { | ||||||
|  |     padding: 10px; | ||||||
|  |     text-align: right; | ||||||
|  |     flex-grow: 1; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | .gmachine-instruction-name, .gmachine-inner-label, .gmachine-inner { | ||||||
|  |     display: flex; | ||||||
|  |     align-items: center; | ||||||
|  | } | ||||||
| @ -4,6 +4,7 @@ date: 2019-08-06T14:26:38-07:00 | |||||||
| draft: true | draft: true | ||||||
| tags: ["C and C++", "Functional Languages", "Compilers"] | tags: ["C and C++", "Functional Languages", "Compilers"] | ||||||
| --- | --- | ||||||
|  | {{< gmachine_css >}} | ||||||
| We now have trees representing valid programs in our language, | We now have trees representing valid programs in our language, | ||||||
| and it's time to think about how to compile them into machine code, | and it's time to think about how to compile them into machine code, | ||||||
| to be executed on hardware. But __how should we execute programs__? | to be executed on hardware. But __how should we execute programs__? | ||||||
| @ -134,12 +135,433 @@ to apply a function, we'll follow the corresponding recipe for | |||||||
| that function, and end up with a new tree that we continue evaluating. | that function, and end up with a new tree that we continue evaluating. | ||||||
| 
 | 
 | ||||||
| ### G-machine | ### G-machine | ||||||
| "Instructions" is a very generic term. We will be creating instructions | "Instructions" is a very generic term. Specifically, we will be creating instructions | ||||||
| for a [G-machine](https://link.springer.com/chapter/10.1007/3-540-15975-4_50), | for a [G-machine](https://link.springer.com/chapter/10.1007/3-540-15975-4_50), | ||||||
| an abstract architecture which we will use to reduce our graphs. The G-machine | an abstract architecture which we will use to reduce our graphs. The G-machine | ||||||
| is stack-based - all operations push and pop items from a stack. The machine | is stack-based - all operations push and pop items from a stack. The machine | ||||||
| will also have a "dump", which is a stack of stacks; this will help with | will also have a "dump", which is a stack of stacks; this will help with | ||||||
| separating function calls. | separating function calls. | ||||||
| 
 | 
 | ||||||
| Besides constructing graphs, the machine will also have operations that will aid | We will follow the same notation as Simon Peyton Jones in | ||||||
| in evaluating graphs. | [his book](https://www.microsoft.com/en-us/research/wp-content/uploads/1992/01/student.pdf) | ||||||
|  | , which was my source of truth when implementing my compiler. The machine | ||||||
|  | will be executing instructions that we give it, and as such, it must have | ||||||
|  | an instruction queue, which we will reference as \\(i\\). We will write | ||||||
|  | \\(x:i\\) to mean "an instruction queue that starts with | ||||||
|  | an instruction x and ends with instructions \\(i\\)". A stack machine | ||||||
|  | obviously needs to have a stack - we will call it \\(s\\), and will | ||||||
|  | adopt a similar notation to the instruction queue: \\(a\_1, a\_2, a\_3 : s\\) | ||||||
|  | will mean "a stack with the top values \\(a\_1\\), \\(a\_2\\), and \\(a\_3\\), | ||||||
|  | and remaining instructions \\(s\\)". | ||||||
|  | 
 | ||||||
|  | There's one more thing the G-machine will have that we've not yet discussed at all, | ||||||
|  | and it's needed because of the following quip earlier in the post: | ||||||
|  | 
 | ||||||
|  | > When we evaluate a tree, we can substitute it in-place with what it evaluates to.  | ||||||
|  | 
 | ||||||
|  | How can we substitute a value in place? Surely we won't iterate over the entire | ||||||
|  | tree and look for an occurence of the tree we evaluted. Rather, wouldn't it be | ||||||
|  | nice if we could update all references to a tree to be something else? Indeed, | ||||||
|  | we can achieve this effect by using __pointers__. I don't mean specifically | ||||||
|  | C/C++ pointers - I mean the more general concept of "an address in memory". | ||||||
|  | The G-machine has a __heap__, much like the heap of a C/C++ process. We | ||||||
|  | can create a tree node on the heap, and then get an __address__ of the node. | ||||||
|  | We then have trees use these addresses to link their child nodes. | ||||||
|  | If we want to replace a tree node with its reduced form, we keep | ||||||
|  | its address the same, but change the value on the heap. | ||||||
|  | This way, all trees that reference the node we change become updated, | ||||||
|  | without us having to change them - their child address remains the same, | ||||||
|  | but the child has now been updated. We represent the heap | ||||||
|  | using \\(h\\). We write \\(h[a : v]\\) to say "the address \\(a\\) points | ||||||
|  | to value \\(v\\) in the heap \\(h\\)". Now you also know why we used | ||||||
|  | the letter \\(a\\) when describing values on the stack - the stack contains | ||||||
|  | addresses of (or pointers to) tree nodes. | ||||||
|  | 
 | ||||||
|  | _Compiling Functional Languages: a tutorial_ also keeps another component | ||||||
|  | of the G-machine, the __global map__, which maps function names to addresses of nodes | ||||||
|  | that represent them. We'll stick with this, and call this global map \\(m\\). | ||||||
|  | 
 | ||||||
|  | Finally, let's talk about what kind of nodes our trees will be made of. | ||||||
|  | We don't have to include every node that we've defined as a subclass of | ||||||
|  | `ast` - some nodes we can compile to instructions, without having to build | ||||||
|  | them. We will also include nodes that we didn't need for to represent expressions. | ||||||
|  | Here's the list of nodes types we'll have: | ||||||
|  | 
 | ||||||
|  | * `NInt` - represents an integer. | ||||||
|  | * `NApp` - represents an application (has two children). | ||||||
|  | * `NGlobal` - represents a global function (like the `f` in `f x`). | ||||||
|  | * `NInd` - an "indrection" node that points to another node. This will help with "replacing" a node. | ||||||
|  | * `NData` - a "packed" node that will represent a constructor with all the arguments. | ||||||
|  | 
 | ||||||
|  | With these nodes in mind, let's try defining some instructions for the G-machine. | ||||||
|  | We start with instructions we'll use to assemble new version of function body trees as we discussed above. | ||||||
|  | First up is __PushInt__: | ||||||
|  | 
 | ||||||
|  | {{< gmachine "PushInt" >}} | ||||||
|  |     {{< gmachine_inner "Before">}} | ||||||
|  |     \( \text{PushInt} \; n : i \quad s \quad h \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "After" >}} | ||||||
|  |     \( i \quad a : s \quad h[a : \text{NInt} \; n] \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "Description" >}} | ||||||
|  |     Push an integer \(n\) onto the stack. | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  | {{< /gmachine >}} | ||||||
|  | 
 | ||||||
|  | Let's go through this. We start with an instruction queue | ||||||
|  | with `PushInt n` on top. We allocate a new `NInt` with the | ||||||
|  | number `n` on the heap at address \\(a\\). We then push | ||||||
|  | the address of the `NInt` node on top of the stack. Next, | ||||||
|  | __PushGlobal__: | ||||||
|  | 
 | ||||||
|  | {{< gmachine "PushGlobal" >}} | ||||||
|  |     {{< gmachine_inner "Before">}} | ||||||
|  |     \( \text{PushGlobal} \; f : i \quad s \quad h \quad m[f : a] \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "After" >}} | ||||||
|  |     \( i \quad a : s \quad h \quad m[f : a] \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "Description" >}} | ||||||
|  |     Push a global function \(f\) onto the stack. | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  | {{< /gmachine >}} | ||||||
|  | 
 | ||||||
|  | We don't allocate anything new on the heap for this one -  | ||||||
|  | we already have a node for the global function. Next up, | ||||||
|  | __Push__: | ||||||
|  | 
 | ||||||
|  | {{< gmachine "Push" >}} | ||||||
|  |     {{< gmachine_inner "Before">}} | ||||||
|  |     \( \text{Push} \; n : i \quad a_0, a_1, ..., a_n : s \quad h \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "After" >}} | ||||||
|  |     \( i \quad a_n, a_0, a_1, ..., a_n : s \quad h \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "Description" >}} | ||||||
|  |     Push a value at offset \(n\) from the top of the stack onto the stack. | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  | {{< /gmachine >}} | ||||||
|  | 
 | ||||||
|  | We define this instruction to work if and only if there exists an address | ||||||
|  | on the stack at offset \\(n\\). We take the value at that offset, and | ||||||
|  | push it onto the stack again. This can be helpful for something like | ||||||
|  | `f x x`, where we use the same tree twice. Speaking of that - let's | ||||||
|  | define an instruction to combine two nodes into an application: | ||||||
|  | 
 | ||||||
|  | {{< gmachine "MkApp" >}} | ||||||
|  |     {{< gmachine_inner "Before">}} | ||||||
|  |     \( \text{MkApp} : i \quad a_0, a_1 : s \quad h \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "After" >}} | ||||||
|  |     \( i \quad a : s \quad h[ a : \text{NApp} \; a_0 \; a_1] \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "Description" >}} | ||||||
|  |     Apply a function at the top of the stack to a value after it. | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  | {{< /gmachine >}} | ||||||
|  | 
 | ||||||
|  | We pop two things off the stack: first, the thing we're applying, then | ||||||
|  | the thing we apply it to. We then create a new node on the heap | ||||||
|  | that is an `NApp` node, with its two children being the nodes we popped off. | ||||||
|  | Finally, we push it onto the stack. | ||||||
|  | 
 | ||||||
|  | Let's try use these instructions to get a feel for it. | ||||||
|  | {{< todo >}}Add an example, probably without notation.{{< /todo >}} | ||||||
|  | 
 | ||||||
|  | Having defined instructions to __build__ graphs, it's now time | ||||||
|  | to move on to instructions to __reduce__ graphs - after all, | ||||||
|  | we're performing graph reduction. A crucial instruction for the | ||||||
|  | G-machine is __Unwind__. What Unwind does depends on what | ||||||
|  | nodes are on the stack. Its name comes from how it behaves | ||||||
|  | when the top of the stack is an `NApp` node that is at | ||||||
|  | the top of a potentially long chain of applications: given | ||||||
|  | an application node, it pushes its left hand side onto the stack. | ||||||
|  | It then __continues to run Unwind__. This is effectively a while loop: | ||||||
|  | applications nodes continue to be expanded this way until the left | ||||||
|  | hand side of an application is finally something | ||||||
|  | that __isn't__ an application. Let's write this rule as follows: | ||||||
|  | 
 | ||||||
|  | {{< gmachine "Unwind-App" >}} | ||||||
|  |     {{< gmachine_inner "Before">}} | ||||||
|  |     \( \text{Unwind} : i \quad a : s \quad h[a : \text{NApp} \; a_0 \; a_1] \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "After" >}} | ||||||
|  |     \( \text{Unwind} : i \quad a_0, a : s \quad h[ a : \text{NApp} \; a_0 \; a_1] \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "Description" >}} | ||||||
|  |     Unwind an application by pushing its left node. | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  | {{< /gmachine >}} | ||||||
|  | 
 | ||||||
|  | Let's talk about what happens when Unwind hits a node that isn't an application. Of all nodes | ||||||
|  | we have described, `NGlobal` seems to be the most likely to be on top of the stack after | ||||||
|  | an application chain has finished unwinding. In this case we want to run the instructions | ||||||
|  | for building the referenced global function. Naturally, these instructions | ||||||
|  | may reference the arguments of the application. We can find the first argument | ||||||
|  | by looking at offset 1 on the stack, which will be an `NApp` node, and then going | ||||||
|  | to its right child. The same can be done for the second and third arguments, if | ||||||
|  | they exist. But this doesn't feel right - we don't want to constantly be looking | ||||||
|  | at the right child of a node on the stack. Instead, we replace each application | ||||||
|  | node on the stack with its right child. Once that's done, we run the actual | ||||||
|  | code for the global function: | ||||||
|  | 
 | ||||||
|  | {{< gmachine "Unwind-Global" >}} | ||||||
|  |     {{< gmachine_inner "Before">}} | ||||||
|  |     \( \text{Unwind} : i \quad a, a_0, a_1, ..., a_n : s \quad h[\substack{a : \text{NGlobal} \; n \; c \\ a_k : \text{NApp} \; a_{k-1} \; a_k'}] \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "After" >}} | ||||||
|  |     \( c \quad a_0', a_1', ..., a_n', a_n : s \quad h[\substack{a : \text{NGlobal} \; n \; c \\ a_k : \text{NApp} \; a_{k-1} \; a_k'}] \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "Description" >}} | ||||||
|  |     Call a global function. | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  | {{< /gmachine >}} | ||||||
|  | 
 | ||||||
|  | In this rule, we used a general rule for \\(a\_k\\), in which \\(k\\) is any number | ||||||
|  | between 0 and \\(n\\). We also expect the `NGlobal` node to contain two parameters, | ||||||
|  | \\(n\\) and \\(c\\). \\(n\\) is the arity of the function (the number of arguments | ||||||
|  | it expects), and \\(c\\) are the instructions to construct the function's tree. | ||||||
|  | 
 | ||||||
|  | The attentive reader will have noticed a catch: we kept \\(a\_n\\) on the stack! | ||||||
|  | This once again goes back to replacing a node in-place. \\(a\_n\\) is the address of the "root" of the | ||||||
|  | whole expression we're simplifying. Thus, to replace the value at this address, we need to keep | ||||||
|  | the address until we have something to replace it with. | ||||||
|  | 
 | ||||||
|  | There's one more thing that can be found at the leftmost end of a tree of applications: `NInd`. | ||||||
|  | We simply replace `NInd` with the node it points to, and resume Unwind: | ||||||
|  | 
 | ||||||
|  | {{< gmachine "Unwind-Ind" >}} | ||||||
|  |     {{< gmachine_inner "Before">}} | ||||||
|  |     \( \text{Unwind} : i \quad a : s \quad h[a : \text{NInd} \; a' ] \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "After" >}} | ||||||
|  |     \( \text{Unwind} : i \quad a' : s \quad h[a : \text{NInd} \; a' ] \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "Description" >}} | ||||||
|  |     Replace indirection node with its target. | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  | {{< /gmachine >}} | ||||||
|  | 
 | ||||||
|  | We've talked about replacing a node, and we've talked about indirection, but we | ||||||
|  | haven't yet an instruction to perform these actions. Let's do so now: | ||||||
|  | 
 | ||||||
|  | {{< gmachine "Update" >}} | ||||||
|  |     {{< gmachine_inner "Before">}} | ||||||
|  |     \( \text{Update} \; n : i \quad a,a_0,a_1,...a_n : s \quad h \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "After" >}} | ||||||
|  |     \( i \quad a_0,a_1,...,a_n : s \quad h[a_n : \text{NInd} \; a ] \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "Description" >}} | ||||||
|  |     Transform node at offset into an indirection. | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  | {{< /gmachine >}} | ||||||
|  | 
 | ||||||
|  | This instruction pops an address from the top of the stack, and replaces | ||||||
|  | a node at the given offset with an indirection to the popped node. After | ||||||
|  | we evaluate a function call, we will use `update` to make sure it's | ||||||
|  | not evaluated again. | ||||||
|  | 
 | ||||||
|  | Now, let's talk about data structures. We have mentioned an `NData` node, | ||||||
|  | but we've given no explanation of how it will work. Obviously, we need | ||||||
|  | to distinguish values of a type created by different constructors: | ||||||
|  | If we have a value of type `List`, it could have been created either | ||||||
|  | using `Nil` or `Cons`. Depending on which constructor was used to | ||||||
|  | create a value of a type, we might treat it differently. Furthermore, | ||||||
|  | it's not always possible to know what constructor was used to | ||||||
|  | create what value at compile time. So, we need a way to know, | ||||||
|  | at runtime, how the value was constructed. We do this using | ||||||
|  | a __tag__. A tag is an integer value that will be contained in | ||||||
|  | the `NData` node. We assign a tag number to each constructor, | ||||||
|  | and when we create a node with that constructor, we set | ||||||
|  | the node's tag accordingly. This way, we can easily | ||||||
|  | tell if a `List` value is a `Nil` or a `Cons`, or | ||||||
|  | if a `Tree` value is a `Node` or a `Leaf`. | ||||||
|  | 
 | ||||||
|  | To operate on `NData` nodes, we will need two primitive operations: __Pack__ and __Split__. | ||||||
|  | Pack will create an `NData` node with a tag from some number of nodes | ||||||
|  | on the stack. These nodes will be placed into a dynamically | ||||||
|  | allocated array: | ||||||
|  | 
 | ||||||
|  | {{< gmachine "Pack" >}} | ||||||
|  |     {{< gmachine_inner "Before">}} | ||||||
|  |     \( \text{Pack} \; t \; n : i \quad a_1,a_2,...a_n : s \quad h \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "After" >}} | ||||||
|  |     \( i \quad a : s \quad h[a : \text{NData} \; t \; [a_1, a_2, ..., a_n] ] \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "Description" >}} | ||||||
|  |     Pack \(n\) nodes from the stack into a node with tag \(t\). | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  | {{< /gmachine >}} | ||||||
|  | 
 | ||||||
|  | Split will do the opposite, by popping | ||||||
|  | of an `NData` node and moving the contents of its | ||||||
|  | array onto the stack: | ||||||
|  | 
 | ||||||
|  | {{< gmachine "Split" >}} | ||||||
|  |     {{< gmachine_inner "Before">}} | ||||||
|  |     \( \text{Split} : i \quad a : s \quad h[a : \text{NData} \; t \; [a_1, a_2, ..., a_n] ] \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "After" >}} | ||||||
|  |     \( i \quad a_1, a_2, ...,a_n : s \quad h[a : \text{NData} \; t \; [a_1, a_2, ..., a_n] ] \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "Description" >}} | ||||||
|  |     Unpack a data node on top of the stack. | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  | {{< /gmachine >}} | ||||||
|  | 
 | ||||||
|  | These two instructions are a good start, but we're missing something | ||||||
|  | fairly big: case analysis. After we've constructed a data type, | ||||||
|  | to perform operations on it, we want to figure out what | ||||||
|  | constructor and values which were used to create it. In order | ||||||
|  | to implement patterns and case expressions, we'll need another | ||||||
|  | instruction that's capable of making a decision based on | ||||||
|  | the tag of an `NData` node. We'll call this instruction __Jump__, | ||||||
|  | and define it to contain a mapping from tags to instructions | ||||||
|  | to be executed for a value of that tag. For instance, | ||||||
|  | if the constructor `Nil` has tag 0, and `Cons` has tag 1, | ||||||
|  | the mapping for the case expression of a length function | ||||||
|  | could be written as \\([0 \\rightarrow [\\text{PushInt} \; 0], 1 \\rightarrow [\\text{PushGlobal} \; \\text{length}, ...] ]\\). | ||||||
|  | Let's define the rule for it: | ||||||
|  | 
 | ||||||
|  | {{< gmachine "Jump" >}} | ||||||
|  |     {{< gmachine_inner "Before">}} | ||||||
|  |     \( \text{Jump} [..., t \rightarrow i_t, ...] : i \quad a : s \quad h[a : \text{NData} \; t \; as ] \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "After" >}} | ||||||
|  |     \( i_t, i \quad a : s \quad h[a : \text{NData} \; t \; as ] \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "Description" >}} | ||||||
|  |     Execute instructions corresponding to a tag. | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  | {{< /gmachine >}} | ||||||
|  | 
 | ||||||
|  | Alright, we've made it through the interesting instructions, | ||||||
|  | but there's still a few that are needed, but less shiny and cool. | ||||||
|  | For instance: imagine we've made a function call. As per the | ||||||
|  | rules for Unwind, we've placed the right hand sides of all applications | ||||||
|  | on the stack, and ran the instructions provided by the function, | ||||||
|  | creating a final graph. We then continue to reduce this final | ||||||
|  | graph. But we've left the function parameters on the stack! | ||||||
|  | This is untidy. We define a __Slide__ instruction, | ||||||
|  | which keeps the address at the top of the stack, but gets | ||||||
|  | rid of the next \\(n\\) addresses: | ||||||
|  | 
 | ||||||
|  | {{< gmachine "Slide" >}} | ||||||
|  |     {{< gmachine_inner "Before">}} | ||||||
|  |     \( \text{Slide} \; n : i \quad a_0, a_1, ..., a_n : s \quad h \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "After" >}} | ||||||
|  |     \( i \quad a_0 : s \quad h \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "Description" >}} | ||||||
|  |     Remove \(n\) addresses after the top from the stack. | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  | {{< /gmachine >}} | ||||||
|  | 
 | ||||||
|  | Just a few more. Next up, we observe that we have not | ||||||
|  | defined any way for our G-machine to perform arithmetic, | ||||||
|  | or indeed, any primitive operations. Since we've | ||||||
|  | not defined any built-in type for booleans, | ||||||
|  | let's avoid talking about operations like `<`, `==`, | ||||||
|  | and so on (in fact, we've omitted them from the grammar so far). | ||||||
|  | So instead, let's talk about the [closed](https://en.wikipedia.org/wiki/Closure_(mathematics)) operations, | ||||||
|  | namely `+`, `-`, `*`, and `/`. We'll define a special instruction for | ||||||
|  | them, called __BinOp__: | ||||||
|  | 
 | ||||||
|  | {{< gmachine "BinOp" >}} | ||||||
|  |     {{< gmachine_inner "Before">}} | ||||||
|  |     \( \text{BinOp} \; \text{op} : i \quad a_0, a_1 : s \quad h[\substack{a_0 : \text{NInt} \; n \\ a_1 : \text{NInt} \; m}] \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "After" >}} | ||||||
|  |     \( i \quad a : s \quad h[\substack{a_0 : \text{NInt} \; n \\ a_1 : \text{NInt} \; m \\ a : \text{NInt} \; (\text{op} \; n \; m)}] \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "Description" >}} | ||||||
|  |     Apply a binary operator on integers. | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  | {{< /gmachine >}} | ||||||
|  | 
 | ||||||
|  | Nothing should be particularly surprising here: | ||||||
|  | the instruction pops two integers off the stack, applies the given | ||||||
|  | binary operation to them, and places the result on the stack. | ||||||
|  | 
 | ||||||
|  | We're not yet done with primitive operations, though. | ||||||
|  | We have a lazy graph reduction machine, which means | ||||||
|  | something like the expression `3*(2+6)` might not | ||||||
|  | be a binary operator applied to two `NInt` nodes. | ||||||
|  | We keep around graphs until they __really__ need to | ||||||
|  | be reduced. So now we need an instruction to trigger | ||||||
|  | reducing a graph, to say, "we need this value now". | ||||||
|  | We call this instruction __Eval__. This is where | ||||||
|  | the dump finally comes in! | ||||||
|  | 
 | ||||||
|  | {{< todo >}}Actually show the dump in the previous evaluasion rules.{{< /todo >}} | ||||||
|  | 
 | ||||||
|  | When we execute Eval, another graph becomes our "focus", and we switch | ||||||
|  | to a new stack. We obviously want to return from this once we've finished | ||||||
|  | evaluating what we "focused" on, so we must store the program state somewhere - | ||||||
|  | on the dump. Here's the rule: | ||||||
|  | 
 | ||||||
|  | {{< gmachine "Eval" >}} | ||||||
|  |     {{< gmachine_inner "Before">}} | ||||||
|  |     \( \text{Eval} : i \quad a : s \quad d \quad h \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "After" >}} | ||||||
|  |     \( [\text{Unwind}] \quad [a] \quad \langle i, s\rangle : d \quad h \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "Description" >}} | ||||||
|  |     Evaluate graph to its normal form. | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  | {{< /gmachine >}} | ||||||
|  | 
 | ||||||
|  | We store the current set of instructions and the current stack on the dump, | ||||||
|  | and start with only Unwind and the value we want to evaluate. | ||||||
|  | That does the job, but we're missing one thing - a way to return to | ||||||
|  | the state we placed onto the dump. To do this, we add __another__ | ||||||
|  | rule to Unwind: | ||||||
|  | 
 | ||||||
|  | {{< gmachine "Unwind-Return" >}} | ||||||
|  |     {{< gmachine_inner "Before">}} | ||||||
|  |     \( \text{Unwind} : i \quad a : s \quad \langle i', s'\rangle : d \quad h[a : \text{NInt} \; n] \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "After" >}} | ||||||
|  |     \( i' \quad a : s' \quad d \quad h[a : \text{NInt} \; n] \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "Description" >}} | ||||||
|  |     Return from Eval instruction. | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  | {{< /gmachine >}} | ||||||
|  | 
 | ||||||
|  | Just one more! Sometimes, it's possible for a tree node to reference itself. | ||||||
|  | For instance, Haskell defines the | ||||||
|  | [fixpoint combinator](https://en.wikipedia.org/wiki/Fixed-point_combinator) | ||||||
|  | as follows: | ||||||
|  | ```Haskell | ||||||
|  | fix f = let x = f x in x | ||||||
|  | ``` | ||||||
|  | 
 | ||||||
|  | In order to do this, an address that references a node must be present | ||||||
|  | while the node is being constructed. We define an instruction, | ||||||
|  | __Alloc__, which helps with that: | ||||||
|  | 
 | ||||||
|  | {{< gmachine "Alloc" >}} | ||||||
|  |     {{< gmachine_inner "Before">}} | ||||||
|  |     \( \text{Alloc} \; n : i \quad s \quad d \quad h \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "After" >}} | ||||||
|  |     \( i \quad s \quad d \quad h[a_k : \text{NInd} \; \text{null}] \quad m \) | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  |     {{< gmachine_inner "Description" >}} | ||||||
|  |     Allocate indirection nodes. | ||||||
|  |     {{< /gmachine_inner >}} | ||||||
|  | {{< /gmachine >}} | ||||||
|  | 
 | ||||||
|  | We can allocate an indirection on the stack, and call Update on it when | ||||||
|  | we've constructed a node. While we're constructing the tree, we can | ||||||
|  | refer to the indirection when a self-reference is required. | ||||||
|  | 
 | ||||||
|  | That's it for the instructions. Next up, we have to convert our expression | ||||||
|  | trees into such instructions. However, this has already gotten pretty long, | ||||||
|  | so we'll do it in the next post. | ||||||
|  | |||||||
		Loading…
	
		Reference in New Issue
	
	Block a user