Compare commits
2 Commits
6e88780f8b
...
4e918db5cb
Author | SHA1 | Date | |
---|---|---|---|
4e918db5cb | |||
382102f071 |
11
code/cs325-langs/sols/hw2.lang
Normal file
11
code/cs325-langs/sols/hw2.lang
Normal file
|
@ -0,0 +1,11 @@
|
|||
state 0;
|
||||
|
||||
effect {
|
||||
if(SOURCE == R) {
|
||||
STATE = STATE + |LEFT|;
|
||||
}
|
||||
}
|
||||
|
||||
combine {
|
||||
STATE = STATE + LSTATE + RSTATE;
|
||||
}
|
242
code/cs325-langs/src/LanguageTwo.hs
Normal file
242
code/cs325-langs/src/LanguageTwo.hs
Normal file
|
@ -0,0 +1,242 @@
|
|||
module LanguageTwo where
|
||||
import qualified PythonAst as Py
|
||||
import Data.Char
|
||||
import Data.Functor
|
||||
import Text.Parsec
|
||||
import Text.Parsec.Char
|
||||
import Text.Parsec.Combinator
|
||||
|
||||
{- Data Types -}
|
||||
data Op
|
||||
= Add
|
||||
| Subtract
|
||||
| Multiply
|
||||
| Divide
|
||||
| Equal
|
||||
| NotEqual
|
||||
| And
|
||||
| Or
|
||||
|
||||
data Expr
|
||||
= IntLiteral Int
|
||||
| BinOp Op Expr Expr
|
||||
| Var String
|
||||
| Length Expr
|
||||
|
||||
data Stmt
|
||||
= IfElse Expr Stmt (Maybe Stmt)
|
||||
| Assign String Expr
|
||||
| Block [Stmt]
|
||||
|
||||
data Prog = Prog Expr [Stmt] [Stmt]
|
||||
|
||||
{- Parser -}
|
||||
type Parser = Parsec String ()
|
||||
|
||||
parseKw :: String -> Parser ()
|
||||
parseKw s = string s $> ()
|
||||
|
||||
parseKwIf :: Parser ()
|
||||
parseKwIf = parseKw "if"
|
||||
|
||||
parseKwElse :: Parser ()
|
||||
parseKwElse = parseKw "else"
|
||||
|
||||
parseKwState :: Parser ()
|
||||
parseKwState = parseKw "state"
|
||||
|
||||
parseKwEffect :: Parser ()
|
||||
parseKwEffect = parseKw "effect"
|
||||
|
||||
parseKwCombine :: Parser ()
|
||||
parseKwCombine = parseKw "combine"
|
||||
|
||||
parseOp :: String -> Op -> Parser Op
|
||||
parseOp s o = string s $> o
|
||||
|
||||
parseInt :: Parser Int
|
||||
parseInt = read <$> (many1 digit <* spaces)
|
||||
|
||||
parseVar :: Parser String
|
||||
parseVar =
|
||||
do
|
||||
c <- satisfy $ \c -> isLetter c || c == '_'
|
||||
cs <- many (satisfy isLetter <|> digit) <* spaces
|
||||
let name = c:cs
|
||||
if name `elem` ["if", "else", "state", "effect", "combine"]
|
||||
then fail "Can't use reserved keyword as identifier"
|
||||
else return name
|
||||
|
||||
parseSurrounded :: Char -> Char -> Parser a -> Parser a
|
||||
parseSurrounded c1 c2 pe =
|
||||
do
|
||||
char c1 >> spaces
|
||||
e <- pe
|
||||
spaces >> char c2 >> spaces
|
||||
return e
|
||||
|
||||
parseLength :: Parser Expr
|
||||
parseLength = Length <$> parseSurrounded '|' '|' parseExpr
|
||||
|
||||
parseParenthesized :: Parser Expr
|
||||
parseParenthesized = parseSurrounded '(' ')' parseExpr
|
||||
|
||||
parseBasic :: Parser Expr
|
||||
parseBasic = choice
|
||||
[ IntLiteral <$> parseInt
|
||||
, Var <$> parseVar
|
||||
, parseLength
|
||||
, parseParenthesized
|
||||
]
|
||||
|
||||
parseLevel :: Parser Op -> Parser Expr -> Parser Expr
|
||||
parseLevel po pe =
|
||||
do
|
||||
e <- pe <* spaces
|
||||
ops <- many ((flip . BinOp <$> (po <* spaces) <*> pe) <* spaces)
|
||||
return $ foldl (flip ($)) e ops
|
||||
|
||||
parseExpr :: Parser Expr
|
||||
parseExpr = foldl (flip parseLevel) parseBasic
|
||||
[ parseOp "*" Multiply <|> parseOp "/" Divide
|
||||
, parseOp "+" Add <|> parseOp "-" Subtract
|
||||
, parseOp "==" Equal <|> parseOp "!=" NotEqual
|
||||
, parseOp "&&" And
|
||||
, try $ parseOp "||" Or
|
||||
]
|
||||
|
||||
parseIf :: Parser Stmt
|
||||
parseIf = do
|
||||
parseKwIf >> spaces
|
||||
c <- parseParenthesized
|
||||
t <- parseStmt <* spaces
|
||||
e <- (Just <$> (parseKwElse >> spaces *> parseStmt)) <|> return Nothing
|
||||
return $ IfElse c t e
|
||||
|
||||
parseBlockStmts :: Parser [Stmt]
|
||||
parseBlockStmts = parseSurrounded '{' '}' (many parseStmt)
|
||||
|
||||
parseBlock :: Parser Stmt
|
||||
parseBlock = Block <$> parseBlockStmts
|
||||
|
||||
parseAssign :: Parser Stmt
|
||||
parseAssign = Assign <$>
|
||||
(parseVar <* spaces <* char '=' <* spaces) <*>
|
||||
parseExpr <* (char ';' >> spaces)
|
||||
|
||||
parseStmt :: Parser Stmt
|
||||
parseStmt = choice
|
||||
[ parseIf
|
||||
, parseAssign
|
||||
, parseBlock
|
||||
]
|
||||
|
||||
parseProgram :: Parser Prog
|
||||
parseProgram = do
|
||||
state <- parseKwState >> spaces *> parseExpr <* char ';' <* spaces
|
||||
effect <- parseKwEffect >> spaces *> parseBlockStmts <* spaces
|
||||
combined <- parseKwCombine >> spaces *> parseBlockStmts <* spaces
|
||||
return $ Prog state effect combined
|
||||
|
||||
parse :: String -> String -> Either ParseError Prog
|
||||
parse = runParser parseProgram ()
|
||||
|
||||
{- Translation -}
|
||||
baseFunction :: Py.PyExpr -> [Py.PyStmt] -> [Py.PyStmt] -> Py.PyStmt
|
||||
baseFunction s e c = Py.FunctionDef "prog" ["xs"] $
|
||||
[Py.IfElse
|
||||
(Py.BinOp Py.LessThan
|
||||
(Py.FunctionCall (Py.Var "len") [Py.Var "xs"])
|
||||
(Py.IntLiteral 2))
|
||||
[Py.Return $ Py.Tuple [s, Py.Var "xs"]]
|
||||
[]
|
||||
Nothing
|
||||
, Py.Assign (Py.VarPat "leng")
|
||||
(Py.BinOp Py.FloorDiv
|
||||
(Py.FunctionCall (Py.Var "len") [Py.Var "xs"])
|
||||
(Py.IntLiteral 2))
|
||||
, Py.Assign (Py.VarPat "left")
|
||||
(Py.Access
|
||||
(Py.Var "xs")
|
||||
[Py.Slice Nothing $ Just (Py.Var "leng")])
|
||||
, Py.Assign (Py.VarPat "right")
|
||||
(Py.Access
|
||||
(Py.Var "xs")
|
||||
[Py.Slice (Just (Py.Var "leng")) Nothing])
|
||||
, Py.Assign (Py.TuplePat [Py.VarPat "ls", Py.VarPat "left"])
|
||||
(Py.FunctionCall (Py.Var "prog") [Py.Var "left"])
|
||||
, Py.Assign (Py.TuplePat [Py.VarPat "rs", Py.VarPat "right"])
|
||||
(Py.FunctionCall (Py.Var "prog") [Py.Var "right"])
|
||||
, Py.Standalone $
|
||||
Py.FunctionCall (Py.Member (Py.Var "left") "reverse") []
|
||||
, Py.Standalone $
|
||||
Py.FunctionCall (Py.Member (Py.Var "right") "reverse") []
|
||||
, Py.Assign (Py.VarPat "state") s
|
||||
, Py.Assign (Py.VarPat "source") (Py.IntLiteral 0)
|
||||
, Py.Assign (Py.VarPat "total") (Py.ListLiteral [])
|
||||
, Py.While
|
||||
(Py.BinOp Py.And
|
||||
(Py.BinOp Py.NotEqual (Py.Var "left") (Py.ListLiteral []))
|
||||
(Py.BinOp Py.NotEqual (Py.Var "right") (Py.ListLiteral []))) $
|
||||
[ Py.IfElse
|
||||
(Py.BinOp Py.LessThanEq
|
||||
(Py.Access (Py.Var "left") [Py.IntLiteral $ -1])
|
||||
(Py.Access (Py.Var "right") [Py.IntLiteral $ -1]))
|
||||
[ Py.Standalone $
|
||||
Py.FunctionCall (Py.Member (Py.Var "total") "append")
|
||||
[Py.FunctionCall (Py.Member (Py.Var "left") "pop") []]
|
||||
, Py.Assign (Py.VarPat "source") (Py.IntLiteral 1)
|
||||
]
|
||||
[] $
|
||||
Just
|
||||
[ Py.Standalone $
|
||||
Py.FunctionCall (Py.Member (Py.Var "total") "append")
|
||||
[Py.FunctionCall (Py.Member (Py.Var "right") "pop") []]
|
||||
, Py.Assign (Py.VarPat "source") (Py.IntLiteral 2)
|
||||
]
|
||||
] ++ e
|
||||
] ++ c ++
|
||||
[ Py.Standalone $ Py.FunctionCall (Py.Member (Py.Var "left") "reverse") []
|
||||
, Py.Standalone $ Py.FunctionCall (Py.Member (Py.Var "right") "reverse") []
|
||||
, Py.Return $ Py.Tuple
|
||||
[ Py.Var "state"
|
||||
, foldl (Py.BinOp Py.Add) (Py.Var "total") [Py.Var "left", Py.Var "right"]
|
||||
]
|
||||
]
|
||||
|
||||
translateExpr :: Expr -> Py.PyExpr
|
||||
translateExpr (IntLiteral i) = Py.IntLiteral i
|
||||
translateExpr (BinOp op l r) =
|
||||
Py.BinOp (translateOp op) (translateExpr l) (translateExpr r)
|
||||
translateExpr (Var s)
|
||||
| s == "SOURCE" = Py.Var "source"
|
||||
| s == "LEFT" = Py.Var "left"
|
||||
| s == "RIGHT" = Py.Var "right"
|
||||
| s == "STATE" = Py.Var "state"
|
||||
| s == "LSTATE" = Py.Var "ls"
|
||||
| s == "RSTATE" = Py.Var "rs"
|
||||
| s == "L" = Py.IntLiteral 1
|
||||
| s == "R" = Py.IntLiteral 2
|
||||
| otherwise = Py.Var s
|
||||
translateExpr (Length e) = Py.FunctionCall (Py.Var "len") [translateExpr e]
|
||||
|
||||
translateOp :: Op -> Py.PyBinOp
|
||||
translateOp Add = Py.Add
|
||||
translateOp Subtract = Py.Subtract
|
||||
translateOp Multiply = Py.Multiply
|
||||
translateOp Divide = Py.Divide
|
||||
translateOp Equal = Py.Equal
|
||||
translateOp NotEqual = Py.NotEqual
|
||||
translateOp And = Py.And
|
||||
translateOp Or = Py.Or
|
||||
|
||||
translateStmt :: Stmt -> [Py.PyStmt]
|
||||
translateStmt (IfElse c t e) =
|
||||
[Py.IfElse (translateExpr c) (translateStmt t) [] (translateStmt <$> e)]
|
||||
translateStmt (Assign "STATE" e) = [Py.Assign (Py.VarPat "state") (translateExpr e)]
|
||||
translateStmt (Assign v e) = [Py.Assign (Py.VarPat v) (translateExpr e)]
|
||||
translateStmt (Block s) = concatMap translateStmt s
|
||||
|
||||
translate :: Prog -> [Py.PyStmt]
|
||||
translate (Prog s e c) =
|
||||
[baseFunction (translateExpr s) (concatMap translateStmt e) (concatMap translateStmt c)]
|
|
@ -5,6 +5,7 @@ data PyBinOp
|
|||
| Subtract
|
||||
| Multiply
|
||||
| Divide
|
||||
| FloorDiv
|
||||
| LessThan
|
||||
| LessThanEq
|
||||
| GreaterThan
|
||||
|
@ -30,6 +31,7 @@ data PyExpr
|
|||
| Member PyExpr String
|
||||
| In PyExpr PyExpr
|
||||
| NotIn PyExpr PyExpr
|
||||
| Slice (Maybe PyExpr) (Maybe PyExpr)
|
||||
|
||||
data PyPat
|
||||
= VarPat String
|
||||
|
|
|
@ -52,11 +52,13 @@ precedence Add = 3
|
|||
precedence Subtract = 3
|
||||
precedence Multiply = 4
|
||||
precedence Divide = 4
|
||||
precedence FloorDiv = 4
|
||||
precedence LessThan = 2
|
||||
precedence LessThanEq = 2
|
||||
precedence GreaterThan = 2
|
||||
precedence GreaterThanEq = 2
|
||||
precedence Equal = 2
|
||||
precedence NotEqual = 2
|
||||
precedence And = 1
|
||||
precedence Or = 0
|
||||
|
||||
|
@ -65,6 +67,7 @@ opString Add = "+"
|
|||
opString Subtract = "-"
|
||||
opString Multiply = "*"
|
||||
opString Divide = "/"
|
||||
opString FloorDiv = "//"
|
||||
opString LessThan = "<"
|
||||
opString LessThanEq = "<="
|
||||
opString GreaterThan = ">"
|
||||
|
@ -120,6 +123,8 @@ translateExpr (In m c) =
|
|||
"(" ++ translateExpr m ++ ") in (" ++ translateExpr c ++ ")"
|
||||
translateExpr (NotIn m c) =
|
||||
"(" ++ translateExpr m ++ ") not in (" ++ translateExpr c ++ ")"
|
||||
translateExpr (Slice l r) =
|
||||
maybe [] (parenth . translateExpr) l ++ ":" ++ maybe [] (parenth . translateExpr) r
|
||||
|
||||
translatePat :: PyPat -> String
|
||||
translatePat (VarPat s) = s
|
||||
|
|
153
content/blog/01_cs325_languages_hw2.md
Normal file
153
content/blog/01_cs325_languages_hw2.md
Normal file
|
@ -0,0 +1,153 @@
|
|||
---
|
||||
title: A Language for an Assignment - Homework 2
|
||||
date: 2019-12-30T20:05:10-08:00
|
||||
tags: ["Haskell", "Python", "Algorithms"]
|
||||
---
|
||||
|
||||
After the madness of the
|
||||
[language for homework 1]({{< relref "00_cs325_languages_hw1.md" >}}),
|
||||
the solution to the second homework offers a moment of respite.
|
||||
Let's get right into the problems, shall we?
|
||||
|
||||
### Homework 2
|
||||
Besides some free-response questions, the homework contains
|
||||
two problems. The first:
|
||||
|
||||
{{< codelines "text" "cs325-langs/hws/hw2.txt" 29 34 >}}
|
||||
|
||||
And the second:
|
||||
|
||||
{{< codelines "text" "cs325-langs/hws/hw2.txt" 36 44 >}}
|
||||
|
||||
At first glance, it's not obvious why these problems are good for
|
||||
us. However, there's one key observation: __`num_inversions` can be implemented
|
||||
using a slightly-modified `mergesort`__. The trick is to maintain a counter
|
||||
of inversions in every recursive call to `mergesort`, updating
|
||||
it every time we take an element from the
|
||||
{{< sidenote "right" "right-note" "right list" >}}
|
||||
If this nomeclature is not clear to you, recall that
|
||||
mergesort divides a list into two smaller lists. The
|
||||
"right list" refers to the second of the two, because
|
||||
if you visualize the original list as a rectangle, and cut
|
||||
it in half (vertically, down the middle), then the second list
|
||||
(from the left) is on the right.
|
||||
{{< /sidenote >}} while there are still elements in the
|
||||
{{< sidenote "left" "left-note" "left list" >}}
|
||||
Why this is the case is left as an exercise to the reader.
|
||||
{{< /sidenote >}}.
|
||||
When we return from the call,
|
||||
we add up the number of inversions from running `num_inversions`
|
||||
on the smaller lists, and the number of inversions that we counted
|
||||
as I described. We then return both the total number
|
||||
of inversions and the sorted list.
|
||||
|
||||
So, we either perform the standard mergesort, or we perform mergesort
|
||||
with additional steps added on. The additional steps can be divided into
|
||||
three general categories:
|
||||
|
||||
1. __Initialization__: We create / set some initial state. This state
|
||||
doesn't depend on the lists or anything else.
|
||||
2. __Effect__: Each time that an element is moved from one of the two smaller
|
||||
lists into the output list, we may change the state in some way (create
|
||||
an effect).
|
||||
3. __Combination__: The final state, and the results of the two
|
||||
sub-problem states, are combined into the output of the function.
|
||||
|
||||
This is all very abstract. In the concrete case of inversions,
|
||||
these steps are as follows:
|
||||
|
||||
1. __Initializtion__: The initial state, which is just the counter, is set to 0.
|
||||
2. __Effect__: Each time an element is moved, if it comes from the right list,
|
||||
the number of inversions is updated.
|
||||
3. __Combination__: We update the state, simply adding the left and right
|
||||
inversion counts.
|
||||
|
||||
We can make a language out of this!
|
||||
|
||||
### A Language
|
||||
Again, let's start by visualizing what the solution will look like. How about this:
|
||||
|
||||
{{< rawblock "cs325-langs/sols/hw2.lang" >}}
|
||||
|
||||
We divide the code into the same three steps that we described above. The first
|
||||
section is the initial state. Since it doesn't depend on anything, we expect
|
||||
it to be some kind of literal, like an integer. Next, we have the effect section,
|
||||
which has access to variables such as "STATE" (to access the current state)
|
||||
and "LEFT" (to access the left list), or "L" to access the "name" of the left list.
|
||||
We use an `if`-statement to check if the origin of the element that was popped
|
||||
(held in the "SOURCE" variable) is the right list (denoted by "R"). If it is,
|
||||
we increment the counter (state) by the proper amount. In the combine step, we simply increment
|
||||
the state by the counters from the left and right solutions, stored in "LSTATE" and "RSTATE".
|
||||
That's it!
|
||||
|
||||
#### Implementation
|
||||
The implementation is not tricky at all. We don't need to use monads like we did last
|
||||
time, and nor do we have to perform any fancy Python nested function declarations.
|
||||
|
||||
To keep with the Python convention of lowercase variables, we'll translate the
|
||||
uppercase "global" variables to lowercase. We'll do it like so:
|
||||
|
||||
{{< codelines "Haskell" "cs325-langs/src/LanguageTwo.hs" 211 220 >}}
|
||||
|
||||
Note that we translated "L" and "R" to integer literals. We'll indicate the source of
|
||||
each element with an integer, since there's no real point to representing it with
|
||||
a string or a variable. We'll need to be aware of this when we implement the actual, generic
|
||||
mergesort code. Let's do that now:
|
||||
|
||||
{{< codelines "Haskell" "cs325-langs/src/LanguageTwo.hs" 145 205 >}}
|
||||
|
||||
This is probably the ugliest part of this assignment: we handwrote a Python
|
||||
AST in Haskell that implements mergesort with our augmentations. Note that
|
||||
this is a function, which takes a `Py.PyExpr` (the initial state expression),
|
||||
and two lists of `Py.PyStmt`, which are the "effect" and "combination" code,
|
||||
respectively. We simply splice them into our regular mergesort function.
|
||||
The translation is otherwise pretty trivial, so there's no real reason
|
||||
to show it here.
|
||||
|
||||
### The Output
|
||||
What's the output of our solution to `num_inversions`? Take a look for yourself:
|
||||
|
||||
```Python
|
||||
def prog(xs):
|
||||
if len(xs)<2:
|
||||
return (0, xs)
|
||||
leng = len(xs)//2
|
||||
left = xs[:(leng)]
|
||||
right = xs[(leng):]
|
||||
(ls,left) = prog(left)
|
||||
(rs,right) = prog(right)
|
||||
left.reverse()
|
||||
right.reverse()
|
||||
state = 0
|
||||
source = 0
|
||||
total = []
|
||||
while (left!=[])and(right!=[]):
|
||||
if left[-1]<=right[-1]:
|
||||
total.append(left.pop())
|
||||
source = 1
|
||||
else:
|
||||
total.append(right.pop())
|
||||
source = 2
|
||||
if source==2:
|
||||
state = state+len(left)
|
||||
state = state+ls+rs
|
||||
left.reverse()
|
||||
right.reverse()
|
||||
return (state, total+left+right)
|
||||
```
|
||||
|
||||
Honestly, that's pretty clean. As clean as `left.reverse()` to allow for \\(O(1)\\) pop is.
|
||||
What's really clean, however, is the implementation of mergesort in our language.
|
||||
It goes as follows:
|
||||
|
||||
```
|
||||
state 0;
|
||||
effect {}
|
||||
combine {}
|
||||
```
|
||||
|
||||
To implement mergesort in our language, which describes mergesort variants, all
|
||||
we have to do is not specify any additional behavior. Cool, huh?
|
||||
|
||||
That's the end of this post. If you liked this one (and the previous one!),
|
||||
keep an eye out for more!
|
Loading…
Reference in New Issue
Block a user