blog-static/code/catamorphisms/Cata.hs

102 lines
2.3 KiB
Haskell

{-# LANGUAGE LambdaCase, DeriveFunctor, DeriveFoldable, MultiParamTypeClasses #-}
import Prelude hiding (length, sum, fix)
length :: [a] -> Int
length [] = 0
length (_:xs) = 1 + length xs
lengthF :: ([a] -> Int) -> [a] -> Int
lengthF rec [] = 0
lengthF rec (_:xs) = 1 + rec xs
lengthF' = \rec -> \case
[] -> 0
_:xs -> 1 + rec xs
fix f = let x = f x in x
length' = fix lengthF
data MyList = MyNil | MyCons Int MyList
data MyListF a = MyNilF | MyConsF Int a
newtype Fix f = Fix { unFix :: f (Fix f) }
testList :: Fix MyListF
testList = Fix (MyConsF 1 (Fix (MyConsF 2 (Fix (MyConsF 3 (Fix MyNilF))))))
myOut :: MyList -> MyListF MyList
myOut MyNil = MyNilF
myOut (MyCons i xs) = MyConsF i xs
myIn :: MyListF MyList -> MyList
myIn MyNilF = MyNil
myIn (MyConsF i xs) = MyCons i xs
instance Functor MyListF where
fmap f MyNilF = MyNilF
fmap f (MyConsF i a) = MyConsF i (f a)
mySumF :: MyListF Int -> Int
mySumF MyNilF = 0
mySumF (MyConsF i rest) = i + rest
mySum :: MyList -> Int
mySum = mySumF . fmap mySum . myOut
myCata :: (MyListF a -> a) -> MyList -> a
myCata f = f . fmap (myCata f) . myOut
myLength = myCata $ \case
MyNilF -> 0
MyConsF _ l -> 1 + l
myMax = myCata $ \case
MyNilF -> 0
MyConsF x y -> max x y
myMin = myCata $ \case
MyNilF -> 0
MyConsF x y -> min x y
myTestList = MyCons 2 (MyCons 1 (MyCons 3 MyNil))
pack :: a -> (Int -> a -> a) -> MyListF a -> a
pack b f MyNilF = b
pack b f (MyConsF x y) = f x y
unpack :: (MyListF a -> a) -> (a, Int -> a -> a)
unpack f = (f MyNilF, \i a -> f (MyConsF i a))
class Functor f => Cata a f where
out :: a -> f a
cata :: Cata a f => (f b -> b) -> a -> b
cata f = f . fmap (cata f) . out
instance Cata MyList MyListF where
out = myOut
data ListF a b = Nil | Cons a b deriving Functor
instance Cata [a] (ListF a) where
out [] = Nil
out (x:xs) = Cons x xs
sum :: Num a => [a] -> a
sum = cata $ \case
Nil -> 0
Cons x xs -> x + xs
data BinaryTree a = Node a (BinaryTree a) (BinaryTree a) | Leaf deriving (Show, Foldable)
data BinaryTreeF a b = NodeF a b b | LeafF deriving Functor
instance Cata (BinaryTree a) (BinaryTreeF a) where
out (Node a l r) = NodeF a l r
out Leaf = LeafF
invert :: BinaryTree a -> BinaryTree a
invert = cata $ \case
LeafF -> Leaf
NodeF a l r -> Node a r l