Clean up proof for day 8.

This commit is contained in:
Danila Fedorin 2020-12-13 20:34:28 -08:00
parent 8ea03a4c51
commit c3a12cbf59

69
day8.v
View File

@ -29,6 +29,7 @@ Module DayEight (Import M:Int).
| Ok : t -> run_result | Ok : t -> run_result
| Fail : set (fin n) -> run_result. | Fail : set (fin n) -> run_result.
(* A single program state .*)
Definition state n : Type := (fin (S n) * set (fin n) * t). Definition state n : Type := (fin (S n) * set (fin n) * t).
(* An instruction is a pair of an opcode and an argument. *) (* An instruction is a pair of an opcode and an argument. *)
@ -39,6 +40,14 @@ Module DayEight (Import M:Int).
addresses, which are used for calculating jumps. *) addresses, which are used for calculating jumps. *)
Definition indices (n : nat) := VectorDef.t (fin n) n. Definition indices (n : nat) := VectorDef.t (fin n) n.
(* Change a jump to a nop, or a nop to a jump. *)
Definition replace (i : inst) : inst :=
match i with
| (add, t) => (add, t)
| (nop, t) => (jmp, t)
| (jmp, t) => (nop, t)
end.
(* Compute the destination jump index, an integer. *) (* Compute the destination jump index, an integer. *)
Definition jump_t {n} (pc : fin n) (off : t) : t := Definition jump_t {n} (pc : fin n) (off : t) : t :=
M.add (nat_to_t (proj1_sig (to_nat pc))) off. M.add (nat_to_t (proj1_sig (to_nat pc))) off.
@ -47,18 +56,23 @@ Module DayEight (Import M:Int).
Not all inputs are valid, so this may fail. *) Not all inputs are valid, so this may fail. *)
Definition valid_jump_t {n} (pc : fin n) (off : t) : option (fin (S n)) := @clamp (S n) (jump_t pc off). Definition valid_jump_t {n} (pc : fin n) (off : t) : option (fin (S n)) := @clamp (S n) (jump_t pc off).
(* Cast a fin n to a fin (S n). *)
Fixpoint weaken_one {n} (f : fin n) : fin (S n) := Fixpoint weaken_one {n} (f : fin n) : fin (S n) :=
match f with match f with
| F1 => F1 | F1 => F1
| FS f' => FS (weaken_one f') | FS f' => FS (weaken_one f')
end. end.
(* Convert a nat to fin. *)
Fixpoint nat_to_fin (n : nat) : fin (S n) := Fixpoint nat_to_fin (n : nat) : fin (S n) :=
match n with match n with
| O => F1 | O => F1
| S n' => FS (nat_to_fin n') | S n' => FS (nat_to_fin n')
end. end.
(* A finite natural is either its maximum value (aka nat_to_fin n),
or it's not thatbig, which means it can be cast down to
a fin (pred n). *)
Lemma fin_big_or_small : forall {n} (f : fin (S n)), Lemma fin_big_or_small : forall {n} (f : fin (S n)),
(f = nat_to_fin n) \/ (exists (f' : fin n), f = weaken_one f'). (f = nat_to_fin n) \/ (exists (f' : fin n), f = weaken_one f').
Proof. Proof.
@ -79,44 +93,6 @@ Module DayEight (Import M:Int).
reflexivity. reflexivity.
Qed. Qed.
Lemma weaken_one_inj : forall n (f1 f2 : fin n),
(weaken_one f1 = weaken_one f2 -> f1 = f2).
Proof.
remember (fun {n} (a b : fin n) => weaken_one a = weaken_one b -> a = b) as P.
(* Base case for rect2 *)
assert (forall n, @P (S n) F1 F1).
{rewrite HeqP. intros n Heq. reflexivity. }
(* 'Impossible' cases for rect2. *)
assert (forall {n} (f : fin n), P (S n) F1 (FS f)).
{rewrite HeqP. intros n f Heq. simpl in Heq. inversion Heq. }
assert (forall {n} (f : fin n), P (S n) (FS f) F1).
{rewrite HeqP. intros n f Heq. simpl in Heq. inversion Heq. }
(* Recursive case for rect2. *)
assert (forall {n} (f g : fin n), P n f g -> P (S n) (FS f) (FS g)).
{rewrite HeqP. intros n f g IH Heq.
simpl in Heq. injection Heq as Heq'.
apply inj_pair2_eq_dec in Heq'.
- rewrite IH. reflexivity. assumption.
- apply eq_nat_dec. }
(* Actually apply recursion. *)
(* This can't be _the_ way to do this. *)
intros n.
specialize (@Fin.rect2 P H H0 H1 H2 n) as Hind.
rewrite HeqP in Hind. apply Hind.
Qed.
Lemma weaken_neq_to_fin : forall {n} (f : fin (S n)),
nat_to_fin (S n) <> weaken_one f.
Proof.
apply Fin.rectS; intros n Heq.
- inversion Heq.
- intros IH. simpl. intros Heq'.
injection Heq' as Hinj. apply inj_pair2_eq_dec in Hinj.
+ simpl in IH. apply IH. apply Hinj.
+ apply eq_nat_dec.
Qed.
(* One modification: we really want to use 'allowed' addresses, (* One modification: we really want to use 'allowed' addresses,
a set that shrinks as the program continues, rather than 'visited' a set that shrinks as the program continues, rather than 'visited'
addresses, a set that increases as the program continues. *) addresses, a set that increases as the program continues. *)
@ -164,6 +140,8 @@ Module DayEight (Import M:Int).
Variable inp : input n. Variable inp : input n.
Hypothesis Hv : valid_input inp. Hypothesis Hv : valid_input inp.
(* If the current address, which is not the end of the array, is
present in the "allowed" set, the program can continue. *)
Lemma step_if_possible : forall pcs v acc, Lemma step_if_possible : forall pcs v acc,
set_In pcs v -> set_In pcs v ->
exists pc' acc', step_noswap inp (weaken_one pcs, v, acc) (pc', set_remove Fin.eq_dec pcs v, acc'). exists pc' acc', step_noswap inp (weaken_one pcs, v, acc) (pc', set_remove Fin.eq_dec pcs v, acc').
@ -177,28 +155,33 @@ Module DayEight (Import M:Int).
exists f'. exists acc. apply step_noswap_jmp with t; auto. exists f'. exists acc. apply step_noswap_jmp with t; auto.
Qed. Qed.
(* A program is either done, stuck (at an invalid/visited address), or can step. *)
Theorem valid_input_progress : forall pc v acc, Theorem valid_input_progress : forall pc v acc,
(pc = nat_to_fin n /\ done inp (pc, v, acc)) \/ (pc = nat_to_fin n /\ done inp (pc, v, acc)) \/
(exists pcs, pc = weaken_one pcs /\ (exists pcs, pc = weaken_one pcs /\
((~ set_In pcs v /\ stuck inp (pc, v, acc)) \/ ((~ set_In pcs v /\ stuck inp (pc, v, acc)) \/
(exists pc' acc', set_In pcs v /\ step_noswap inp (pc, v, acc) (pc', set_remove Fin.eq_dec pcs v, acc')))). (exists pc' acc', set_In pcs v /\
step_noswap inp (pc, v, acc) (pc', set_remove Fin.eq_dec pcs v, acc')))).
Proof. Proof.
intros pc v acc. intros pc v acc.
(* Have we reached the end? *) (* Have we reached the end? *)
destruct (fin_big_or_small pc). destruct (fin_big_or_small pc).
(* We're at the end, so we're done. *) (* We're at the end, so we're done. *)
left. rewrite H. split. reflexivity. apply done_prog. left. rewrite H. split. reflexivity. apply done_prog.
(* We're not at the end. Is the PC valid? *) (* We're not at the end. *)
right. destruct H as [pcs H]. exists pcs. rewrite H. split. reflexivity. right. destruct H as [pcs H]. exists pcs. rewrite H. split. reflexivity.
(* We're not at the end. Is the PC valid? *)
destruct (set_In_dec Fin.eq_dec pcs v). destruct (set_In_dec Fin.eq_dec pcs v).
- (* It is. *) - (* It is. *)
right. right.
destruct (step_if_possible pcs v acc) as [pc' [acc' Hstep]]; auto. destruct (step_if_possible pcs v acc) as [pc' [acc' Hstep]]; auto.
exists pc'. exists acc'. split; auto. exists pc'. exists acc'. split; auto.
- (* It i not. *) - (* It is not. *)
left. split; auto. apply stuck_prog; auto. left. split; auto. apply stuck_prog; auto.
Qed. Qed.
(* A valid input always terminates, either by getting to the end of the program,
or by looping and thus getting stuck. *)
Program Fixpoint valid_input_terminates (pc : fin (S n)) (v : set (fin n)) (acc : t) (Hnd : List.NoDup v) Program Fixpoint valid_input_terminates (pc : fin (S n)) (v : set (fin n)) (acc : t) (Hnd : List.NoDup v)
{ measure (length v) }: { measure (length v) }:
(exists pc', run_noswap inp (pc, v, acc) pc') := (exists pc', run_noswap inp (pc, v, acc) pc') :=
@ -237,7 +220,5 @@ Module DayEight (Import M:Int).
specialize (IHv H2 H). specialize (IHv H2 H).
simpl. rewrite Heq_dec. simpl. lia. simpl. rewrite Heq_dec. simpl. lia.
Qed. Qed.
End ValidInput.
(* Stoppped here. *)
Admitted. *)
End DayEight. End DayEight.