Compare commits
4 Commits
3d85144065
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
| 7a8503c3fe | |||
| 2b69cbd391 | |||
| 661bcbb557 | |||
| c6ac448ad2 |
55
README.md
Normal file
55
README.md
Normal file
@@ -0,0 +1,55 @@
|
|||||||
|
# Advent of Code 2020 Solutions
|
||||||
|
Here's to my first 50 star year since 2017! The goal
|
||||||
|
was to make it to top 100 at least once this year,
|
||||||
|
and it finally came true on day 22 (and again in day 25
|
||||||
|
part 2, but that hardly counts). Honestly,
|
||||||
|
I am not at all happy with myself, though.
|
||||||
|
|
||||||
|
## Kinds of Solutions
|
||||||
|
I "raced" in [Crystal](https://crystal-lang.org), but also tried my hand at
|
||||||
|
formal verification in [Coq](https://coq.inria.fr/), and tried out
|
||||||
|
an APL dialect called [J](https://jsoftware.com/) for fun.
|
||||||
|
I didn't always clean my race day solutions, particularly the ones to the
|
||||||
|
"hard" days. I will write about my Coq solutions on [my site](https://danilafe.com).
|
||||||
|
|
||||||
|
## Rankings
|
||||||
|
Here's the (rather embarassing) table with my times.
|
||||||
|
```
|
||||||
|
-------Part 1-------- -------Part 2--------
|
||||||
|
Day Time Rank Score Time Rank Score
|
||||||
|
25 00:07:18 105 0 00:07:24 94 7
|
||||||
|
24 00:25:27 1496 0 00:43:46 1165 0
|
||||||
|
23 00:27:30 887 0 01:35:00 1057 0
|
||||||
|
22 00:03:44 42 59 01:16:52 2242 0
|
||||||
|
21 00:21:57 612 0 00:26:05 439 0
|
||||||
|
20 00:27:52 465 0 03:00:50 845 0
|
||||||
|
19 00:14:56 123 0 00:48:50 439 0
|
||||||
|
18 00:26:17 1209 0 00:28:01 574 0
|
||||||
|
17 00:17:23 400 0 00:19:14 281 0
|
||||||
|
16 00:11:50 627 0 01:03:40 2040 0
|
||||||
|
15 00:18:11 1772 0 00:30:38 1924 0
|
||||||
|
14 00:18:05 1220 0 00:39:57 1173 0
|
||||||
|
13 00:04:59 198 0 01:05:11 1606 0
|
||||||
|
12 00:06:19 206 0 00:14:17 245 0
|
||||||
|
11 00:13:23 414 0 00:19:11 261 0
|
||||||
|
10 00:05:04 293 0 00:31:04 1493 0
|
||||||
|
9 00:08:55 1721 0 00:26:50 3540 0
|
||||||
|
8 00:04:23 275 0 00:09:56 256 0
|
||||||
|
7 00:17:46 832 0 00:24:22 615 0
|
||||||
|
6 00:03:31 385 0 00:09:38 999 0
|
||||||
|
5 00:08:21 839 0 00:27:23 3404 0
|
||||||
|
4 00:07:40 786 0 00:20:26 440 0
|
||||||
|
3 00:02:46 119 0 00:07:40 448 0
|
||||||
|
2 00:03:48 341 0 00:06:01 272 0
|
||||||
|
1 00:07:52 1072 0 00:09:00 748 0
|
||||||
|
```
|
||||||
|
|
||||||
|
## Crystal for Competitive Programming
|
||||||
|
I really enjoyed writing Crystal for the Advent of Code, but there were a few reasons
|
||||||
|
why it wasn't perfect for the task.
|
||||||
|
|
||||||
|
* When you're not banking on brute force speed, you lose some time to the compiler.
|
||||||
|
* Numbers are _always_ 32-bit by default, and require constant `_i64` suffixes everywhere
|
||||||
|
in the code when they're involved.
|
||||||
|
* Type annotations (however necessary they are) for hashes and arrays make refactoring
|
||||||
|
a little bit slower.
|
||||||
28
day25.cr
Normal file
28
day25.cr
Normal file
@@ -0,0 +1,28 @@
|
|||||||
|
require "advent"
|
||||||
|
INPUT = input(2020, 25).lines.map(&.to_i64)
|
||||||
|
|
||||||
|
def transform(s)
|
||||||
|
i = 1_i64
|
||||||
|
c = 0
|
||||||
|
loop do
|
||||||
|
c += 1
|
||||||
|
i = (i * s) % 20201227
|
||||||
|
yield i, c
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
def find_size(s, goal)
|
||||||
|
transform(s) do |n, c|
|
||||||
|
return c if n == goal
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
def part1(input)
|
||||||
|
goal = find_size(7, input[0])
|
||||||
|
puts goal
|
||||||
|
transform(input[1]) do |n, c|
|
||||||
|
return n if c == goal
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
puts part1(INPUT.clone)
|
||||||
77
day8.v
77
day8.v
@@ -202,35 +202,54 @@ Module DayEight (Import M:Int).
|
|||||||
left. split; auto. apply stuck_prog; auto.
|
left. split; auto. apply stuck_prog; auto.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
(* A valid input always terminates, either by getting to the end of the program,
|
Theorem list_length_induction {X : Type} (P : list X -> Prop) :
|
||||||
or by looping and thus getting stuck. *)
|
(forall l, (forall l', length l' < length l -> P l') -> P l) ->
|
||||||
Program Fixpoint valid_input_terminates (pc : fin (S n)) (v : set (fin n)) (acc : t) (Hnd : List.NoDup v)
|
forall l, P l.
|
||||||
{ measure (length v) }:
|
Proof.
|
||||||
(exists pc', run_noswap inp (pc, v, acc) pc') :=
|
intros Hrec.
|
||||||
match valid_input_progress pc v acc with
|
assert (forall (l l' : list X), length l' <= length l -> P l').
|
||||||
| or_introl (conj Heq Hdone) => _
|
{ induction l; intros l' Hlen; apply Hrec; intros l'0 Hlen0.
|
||||||
| or_intror (ex_intro _ pcs (conj Hw w)) =>
|
- simpl in Hlen. lia.
|
||||||
match w with
|
- apply IHl. simpl in Hlen. lia. }
|
||||||
| or_introl (conj Hnin Hstuck) => _
|
intros l. apply H with l. lia.
|
||||||
| or_intror (ex_intro _ pc' (ex_intro _ acc' (conj Hin Hst))) =>
|
Qed.
|
||||||
match valid_input_terminates pc' (set_remove Fin.eq_dec pcs v) acc' (set_remove_nodup Fin.eq_dec pcs Hnd) with
|
|
||||||
| ex_intro _ pc'' Hrun => _
|
Theorem set_remove_length : forall (f : fin n) (s : set (fin n)),
|
||||||
end
|
set_In f s ->
|
||||||
end
|
length (set_remove Fin.eq_dec f s) < length s.
|
||||||
end.
|
Proof.
|
||||||
Obligation 1. eexists. apply run_noswap_ok. assumption. Qed.
|
intros f s Hin.
|
||||||
Obligation 2. eexists. apply run_noswap_fail. assumption. Qed.
|
induction s.
|
||||||
Obligation 3.
|
- inversion Hin.
|
||||||
clear Heq_anonymous. clear valid_input_terminates. clear Hst.
|
- simpl. destruct (Fin.eq_dec f a) eqn:Heq.
|
||||||
induction v.
|
+ unfold lt. apply le_n. (* Why couldn't lia get this one? *)
|
||||||
- inversion Hin.
|
+ inversion Hin; subst. exfalso. apply n0. auto.
|
||||||
- destruct (Fin.eq_dec pcs a) eqn:Heq_dec.
|
apply IHs in H. simpl. lia.
|
||||||
+ simpl. rewrite Heq_dec. lia.
|
Qed.
|
||||||
+ inversion Hnd; subst.
|
|
||||||
inversion Hin. subst. exfalso. apply n0. auto.
|
Theorem valid_input_terminates : forall (pc : fin (S n)) (v : set (fin n)) (acc : t),
|
||||||
specialize (IHv H2 H).
|
(exists pc', run_noswap inp (pc, v, acc) pc').
|
||||||
simpl. rewrite Heq_dec. simpl. lia.
|
Proof.
|
||||||
|
intros pc v. generalize dependent pc.
|
||||||
|
induction v using list_length_induction.
|
||||||
|
intros pc acc.
|
||||||
|
destruct (valid_input_progress pc l acc) as [[_ Hd]|[pc' [Hw [[_ Hst]|[pc'' [acc'' [Hin Hst]]]]]]].
|
||||||
|
- (* We're done. *)
|
||||||
|
eexists. apply run_noswap_ok. assumption.
|
||||||
|
- (* We're stuck. *)
|
||||||
|
eexists. apply run_noswap_fail. assumption.
|
||||||
|
- (* We can make a step. This will remove our current PC from the valid list, *)
|
||||||
|
edestruct (H (set_remove Fin.eq_dec pc' l)).
|
||||||
|
(* Since the PC must be in the list, removing it makes the list smaller. *)
|
||||||
|
apply (set_remove_length _ _ Hin).
|
||||||
|
(* Without the current PC, our valid set shrinks.
|
||||||
|
Since this is the inductive step, we have assumed
|
||||||
|
that programs with smaller sets of valid PCs always
|
||||||
|
terminate. Thus, after we make the step, we're done. *)
|
||||||
|
exists x. subst. eapply run_noswap_trans.
|
||||||
|
+ auto.
|
||||||
|
+ apply Hst.
|
||||||
|
+ apply H0.
|
||||||
Qed.
|
Qed.
|
||||||
Obligation 4. eexists. eapply run_noswap_trans; auto. apply Hst. apply Hrun. Qed.
|
|
||||||
End ValidInput.
|
End ValidInput.
|
||||||
End DayEight.
|
End DayEight.
|
||||||
|
|||||||
Reference in New Issue
Block a user