Add homework 1's problem 1 formalization
This commit is contained in:
commit
1ec72b59b9
98
hw1.v
Normal file
98
hw1.v
Normal file
@ -0,0 +1,98 @@
|
||||
Require Import Coq.Arith.PeanoNat.
|
||||
Require Import Coq.Logic.EqdepFacts.
|
||||
|
||||
Inductive OrderedNums : nat -> list nat -> Prop :=
|
||||
| FoundAll : forall (l : list nat), OrderedNums 0 (cons 0 l)
|
||||
| FoundNext : forall (n : nat) (l : list nat),
|
||||
OrderedNums n l -> OrderedNums (S n) (cons (S n) l)
|
||||
| Skip : forall (n x : nat) (l : list nat),
|
||||
OrderedNums n l -> OrderedNums n (cons x l).
|
||||
|
||||
Fact orderedThree : OrderedNums 3 (cons 3 (cons 2 (cons 2 (cons 1 (cons 0 nil))))).
|
||||
Proof.
|
||||
apply FoundNext.
|
||||
apply FoundNext.
|
||||
apply Skip.
|
||||
apply FoundNext.
|
||||
apply FoundAll.
|
||||
Qed.
|
||||
|
||||
Fixpoint check_numbers (k : nat) (v : list nat) : bool :=
|
||||
match v with
|
||||
| nil => false
|
||||
| cons n v =>
|
||||
if Nat.eq_dec k n
|
||||
then
|
||||
match k with
|
||||
| 0 => true
|
||||
| (S k') => check_numbers k' v
|
||||
end
|
||||
else check_numbers k v
|
||||
end.
|
||||
|
||||
Theorem check_numbers_one : forall (k : nat) (l : list nat),
|
||||
check_numbers k l = true -> OrderedNums k l.
|
||||
Proof.
|
||||
intros k l Heq.
|
||||
generalize dependent k.
|
||||
(* Go by induction on l. *)
|
||||
induction l; intros k Heq; simpl in Heq.
|
||||
- (* List is empty, algorithm couldn't have returned true. *)
|
||||
discriminate Heq.
|
||||
- (* List is not empty; what we do next depends on whether k is equal or not. *)
|
||||
destruct (Nat.eq_dec k a) eqn:Heqk.
|
||||
+ (* k is equal, so we either recurse (if it' not zero), or we're done (if it's zero). *)
|
||||
destruct k; subst.
|
||||
* (* k is zero, so we've found all the numbers *)
|
||||
apply FoundAll.
|
||||
* (* k is not zero, we go on looking, which is correct by the induction hypothesis. *)
|
||||
apply FoundNext. auto.
|
||||
+ (* k didn't match. We go on looking, and it's correct by the induction hypothesis. *)
|
||||
apply Skip. auto.
|
||||
Qed.
|
||||
|
||||
Require Import Coq.Program.Equality.
|
||||
|
||||
Lemma check_numbers_suc : forall (k : nat) (v : list nat),
|
||||
OrderedNums (S k) v -> OrderedNums k v.
|
||||
Proof.
|
||||
intros k v Hsk.
|
||||
dependent induction Hsk.
|
||||
- apply Skip. auto.
|
||||
- apply Skip. apply IHHsk. auto.
|
||||
Qed.
|
||||
|
||||
Lemma check_numbers_suc_p : forall (k : nat) (v : list nat),
|
||||
~ OrderedNums k v -> ~ OrderedNums (S k) v.
|
||||
Proof.
|
||||
intros k v Hk HSk.
|
||||
apply Hk. apply check_numbers_suc. auto.
|
||||
Qed.
|
||||
|
||||
Theorem check_numbers_two : forall (k : nat) (l : list nat),
|
||||
check_numbers k l = false -> ~ OrderedNums k l.
|
||||
Proof.
|
||||
intros k l.
|
||||
generalize dependent k.
|
||||
(* Go by induction on the list. *)
|
||||
induction l; intros k Heq Hk.
|
||||
- (* The list is empty, so we can't have ordered numbers. *)
|
||||
inversion Hk.
|
||||
- (* The evaluation depends on whether or not k is equal to the given number. *)
|
||||
simpl in Heq. destruct (Nat.eq_dec k a) eqn:Heqk.
|
||||
+ (* k is equal to the number; what we do next depends on k. *)
|
||||
destruct k; subst.
|
||||
* (* k is zero, so we return true. Contradictory assumption. *)
|
||||
inversion Heq.
|
||||
* (* k is not zero, we make a recurisve call. *)
|
||||
(* k = S k'. So the recursive call returns false, and we know that
|
||||
there aren't k' numbers in a row. *)
|
||||
inversion Hk; subst;
|
||||
(* We know that if there are no k' numbers, there also can't be k numbers. *)
|
||||
specialize (check_numbers_suc k l) as Hsuc;
|
||||
(* We know there are no k' numbers by induction. *)
|
||||
specialize (IHl k Heq);
|
||||
auto.
|
||||
+ (* k is not equal to the number. We just go by induction. *)
|
||||
specialize (IHl k Heq). inversion Hk; subst; auto.
|
||||
Qed.
|
Loading…
Reference in New Issue
Block a user