2024-04-13 20:46:30 -07:00
|
|
|
|
open import Agda.Primitive using (lsuc)
|
|
|
|
|
|
|
|
|
|
module MonotonicState {s} {S : Set s}
|
|
|
|
|
(_≼_ : S → S → Set s)
|
|
|
|
|
(≼-trans : ∀ {s₁ s₂ s₃ : S} → s₁ ≼ s₂ → s₂ ≼ s₃ → s₁ ≼ s₃) where
|
|
|
|
|
|
|
|
|
|
open import Data.Product using (Σ; _×_; _,_)
|
|
|
|
|
|
|
|
|
|
open import Utils using (_⊗_; _,_)
|
|
|
|
|
|
|
|
|
|
-- Sometimes, we need a state monad whose values depend on the state. However,
|
|
|
|
|
-- one trouble with such monads is that as the state evolves, old values
|
|
|
|
|
-- in scope are over the 'old' state, and don't get updated accordingly.
|
|
|
|
|
-- Apparently, a related version of this problem is called 'demonic bind'.
|
|
|
|
|
--
|
|
|
|
|
-- One solution to the problem is to also witness some kind of relationtion
|
|
|
|
|
-- between the input and output states. Using this relationship makes it possible
|
|
|
|
|
-- to 'bring old values up to speed'.
|
|
|
|
|
--
|
|
|
|
|
-- Motivated primarily by constructing a Control Flow Graph, the 'relationship'
|
|
|
|
|
-- I've chosen is a 'less-than' relation. Thus, 'MonotonicState' is just
|
|
|
|
|
-- a (dependent) state "monad" that also witnesses that the state keeps growing.
|
|
|
|
|
|
|
|
|
|
MonotonicState : (S → Set s) → Set s
|
|
|
|
|
MonotonicState T = (s₁ : S) → Σ S (λ s₂ → T s₂ × s₁ ≼ s₂)
|
|
|
|
|
|
|
|
|
|
-- It's not a given that the (arbitrary) _≼_ relationship can be used for
|
|
|
|
|
-- updating old values. The Relaxable typeclass represents type constructor
|
|
|
|
|
-- that support the operation.
|
|
|
|
|
|
|
|
|
|
record Relaxable (T : S → Set s) : Set (lsuc s) where
|
|
|
|
|
field relax : ∀ {s₁ s₂ : S} → s₁ ≼ s₂ → T s₁ → T s₂
|
|
|
|
|
|
|
|
|
|
instance
|
|
|
|
|
ProdRelaxable : ∀ {P : S → Set s} {Q : S → Set s} →
|
|
|
|
|
{{ PRelaxable : Relaxable P }} → {{ QRelaxable : Relaxable Q }} →
|
|
|
|
|
Relaxable (P ⊗ Q)
|
|
|
|
|
ProdRelaxable {{pr}} {{qr}} = record
|
|
|
|
|
{ relax = (λ { g₁≼g₂ (p , q) →
|
|
|
|
|
( Relaxable.relax pr g₁≼g₂ p
|
|
|
|
|
, Relaxable.relax qr g₁≼g₂ q) }
|
|
|
|
|
)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
-- In general, the "MonotonicState monad" is not even a monad; it's not
|
|
|
|
|
-- even applicative. The trouble is that functions in general cannot be
|
|
|
|
|
-- 'relaxed', and to apply an 'old' function to a 'new' value, you'd thus
|
|
|
|
|
-- need to un-relax the value (which also isn't possible in general).
|
|
|
|
|
--
|
|
|
|
|
-- However, we _can_ combine pairs from two functions into a tuple, which
|
|
|
|
|
-- would equivalent to the applicative operation if functions were relaxable.
|
|
|
|
|
--
|
|
|
|
|
-- TODO: Now that I think about it, the swapped version of the applicative
|
|
|
|
|
-- operation is possible, since it doesn't require lifting functions.
|
|
|
|
|
|
|
|
|
|
infixr 4 _⟨⊗⟩_
|
|
|
|
|
_⟨⊗⟩_ : ∀ {T₁ T₂ : S → Set s} {{ _ : Relaxable T₁ }} →
|
|
|
|
|
MonotonicState T₁ → MonotonicState T₂ → MonotonicState (T₁ ⊗ T₂)
|
|
|
|
|
_⟨⊗⟩_ {{r}} f₁ f₂ s
|
|
|
|
|
with (s' , (t₁ , s≼s')) ← f₁ s
|
|
|
|
|
with (s'' , (t₂ , s'≼s'')) ← f₂ s' =
|
|
|
|
|
(s'' , ((Relaxable.relax r s'≼s'' t₁ , t₂) , ≼-trans s≼s' s'≼s''))
|
|
|
|
|
|
|
|
|
|
infixl 4 _update_
|
|
|
|
|
_update_ : ∀ {T : S → Set s} {{ _ : Relaxable T }} →
|
|
|
|
|
MonotonicState T → (∀ (s : S) → T s → Σ S (λ s' → s ≼ s')) →
|
|
|
|
|
MonotonicState T
|
|
|
|
|
_update_ {{r}} f mod s
|
|
|
|
|
with (s' , (t , s≼s')) ← f s
|
|
|
|
|
with (s'' , s'≼s'') ← mod s' t =
|
|
|
|
|
(s'' , ((Relaxable.relax r s'≼s'' t , ≼-trans s≼s' s'≼s'')))
|
|
|
|
|
|
|
|
|
|
infixl 4 _map_
|
|
|
|
|
_map_ : ∀ {T₁ T₂ : S → Set s} →
|
|
|
|
|
MonotonicState T₁ → (∀ (s : S) → T₁ s → T₂ s) → MonotonicState T₂
|
|
|
|
|
_map_ f fn s = let (s' , (t₁ , s≼s')) = f s in (s' , (fn s' t₁ , s≼s'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-- To reason about MonotonicState instances, we need predicates over their
|
|
|
|
|
-- values. But such values are dependent, so our predicates need to accept
|
|
|
|
|
-- the state as argument, too.
|
|
|
|
|
|
|
|
|
|
DependentPredicate : (S → Set s) → Set (lsuc s)
|
|
|
|
|
DependentPredicate T = ∀ (s₁ : S) → T s₁ → Set s
|
|
|
|
|
|
2024-04-20 19:31:13 -07:00
|
|
|
|
data Both {T₁ T₂ : S → Set s}
|
|
|
|
|
(P : DependentPredicate T₁)
|
|
|
|
|
(Q : DependentPredicate T₂) : DependentPredicate (T₁ ⊗ T₂) where
|
|
|
|
|
MkBoth : ∀ {s : S} {t₁ : T₁ s} {t₂ : T₂ s} → P s t₁ → Q s t₂ → Both P Q s (t₁ , t₂)
|
2024-04-13 20:46:30 -07:00
|
|
|
|
|
2024-04-20 19:31:13 -07:00
|
|
|
|
data And {T : S → Set s}
|
|
|
|
|
(P : DependentPredicate T)
|
|
|
|
|
(Q : DependentPredicate T) : DependentPredicate T where
|
|
|
|
|
MkAnd : ∀ {s : S} {t : T s} → P s t → Q s t → And P Q s t
|
2024-04-20 18:09:01 -07:00
|
|
|
|
|
2024-04-13 20:46:30 -07:00
|
|
|
|
-- Since monotnic functions keep adding on to the state, proofs of
|
|
|
|
|
-- predicates over their outputs go stale fast (they describe old values of
|
|
|
|
|
-- the state). To keep them relevant, we need them to still hold on 'bigger
|
|
|
|
|
-- states'. We call such predicates monotonic as well, since they respect the
|
|
|
|
|
-- ordering relation.
|
|
|
|
|
|
2024-04-13 20:56:56 -07:00
|
|
|
|
record MonotonicPredicate {T : S → Set s} {{ r : Relaxable T }} (P : DependentPredicate T) : Set s where
|
|
|
|
|
field relaxPredicate : ∀ (s₁ s₂ : S) (t₁ : T s₁) (s₁≼s₂ : s₁ ≼ s₂) →
|
2024-04-13 20:46:30 -07:00
|
|
|
|
P s₁ t₁ → P s₂ (Relaxable.relax r s₁≼s₂ t₁)
|
|
|
|
|
|
2024-04-20 19:31:13 -07:00
|
|
|
|
instance
|
|
|
|
|
BothMonotonic : ∀ {T₁ : S → Set s} {T₂ : S → Set s}
|
|
|
|
|
{{ _ : Relaxable T₁ }} {{ _ : Relaxable T₂ }}
|
|
|
|
|
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
|
|
|
|
|
{{_ : MonotonicPredicate P}} {{_ : MonotonicPredicate Q}} →
|
|
|
|
|
MonotonicPredicate (Both P Q)
|
|
|
|
|
BothMonotonic {{_}} {{_}} {{P-Mono}} {{Q-Mono}} = record
|
|
|
|
|
{ relaxPredicate = (λ { s₁ s₂ (t₁ , t₂) s₁≼s₂ (MkBoth p q) →
|
|
|
|
|
MkBoth (MonotonicPredicate.relaxPredicate P-Mono s₁ s₂ t₁ s₁≼s₂ p)
|
|
|
|
|
(MonotonicPredicate.relaxPredicate Q-Mono s₁ s₂ t₂ s₁≼s₂ q)})
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
AndMonotonic : ∀ {T : S → Set s} {{ _ : Relaxable T }}
|
|
|
|
|
{P : DependentPredicate T} {Q : DependentPredicate T}
|
|
|
|
|
{{_ : MonotonicPredicate P}} {{_ : MonotonicPredicate Q}} →
|
|
|
|
|
MonotonicPredicate (And P Q)
|
|
|
|
|
AndMonotonic {{_}} {{P-Mono}} {{Q-Mono}} = record
|
|
|
|
|
{ relaxPredicate = (λ { s₁ s₂ t s₁≼s₂ (MkAnd p q) →
|
|
|
|
|
MkAnd (MonotonicPredicate.relaxPredicate P-Mono s₁ s₂ t s₁≼s₂ p)
|
|
|
|
|
(MonotonicPredicate.relaxPredicate Q-Mono s₁ s₂ t s₁≼s₂ q)})
|
|
|
|
|
}
|
|
|
|
|
|
2024-04-13 20:46:30 -07:00
|
|
|
|
-- A MonotonicState "monad" m has a certain property if its ouputs satisfy that
|
|
|
|
|
-- property for all inputs.
|
|
|
|
|
|
2024-04-20 19:31:13 -07:00
|
|
|
|
data Always {T : S → Set s} (P : DependentPredicate T) (m : MonotonicState T) : Set s where
|
|
|
|
|
MkAlways : (∀ s₁ → let (s₂ , t , _) = m s₁ in P s₂ t) → Always P m
|
2024-04-13 20:46:30 -07:00
|
|
|
|
|
2024-04-20 18:09:01 -07:00
|
|
|
|
infixr 4 _⟨⊗⟩-reason_
|
|
|
|
|
_⟨⊗⟩-reason_ : ∀ {T₁ T₂ : S → Set s} {{ _ : Relaxable T₁ }}
|
2024-04-13 20:46:30 -07:00
|
|
|
|
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
|
2024-04-13 20:56:56 -07:00
|
|
|
|
{{P-Mono : MonotonicPredicate P}}
|
2024-04-13 20:46:30 -07:00
|
|
|
|
{m₁ : MonotonicState T₁} {m₂ : MonotonicState T₂} →
|
2024-04-20 19:31:13 -07:00
|
|
|
|
Always P m₁ → Always Q m₂ → Always (Both P Q) (m₁ ⟨⊗⟩ m₂)
|
|
|
|
|
_⟨⊗⟩-reason_ {P = P} {Q = Q} {{P-Mono = P-Mono}} {m₁ = m₁} {m₂ = m₂} (MkAlways aP) (MkAlways aQ) =
|
|
|
|
|
MkAlways impl
|
|
|
|
|
where
|
|
|
|
|
impl : ∀ s₁ → let (s₂ , t , _) = (m₁ ⟨⊗⟩ m₂) s₁ in (Both P Q) s₂ t
|
|
|
|
|
impl s
|
|
|
|
|
with p ← aP s
|
|
|
|
|
with (s' , (t₁ , s≼s')) ← m₁ s
|
|
|
|
|
with q ← aQ s'
|
|
|
|
|
with (s'' , (t₂ , s'≼s'')) ← m₂ s' =
|
|
|
|
|
MkBoth (MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p) q
|
2024-04-20 18:09:01 -07:00
|
|
|
|
|
|
|
|
|
infixl 4 _update-reason_
|
|
|
|
|
_update-reason_ : ∀ {T : S → Set s} {{ r : Relaxable T }} →
|
|
|
|
|
{P : DependentPredicate T} {Q : DependentPredicate T}
|
|
|
|
|
{{P-Mono : MonotonicPredicate P}}
|
|
|
|
|
{m : MonotonicState T} {mod : ∀ (s : S) → T s → Σ S (λ s' → s ≼ s')} →
|
2024-04-20 19:31:13 -07:00
|
|
|
|
Always P m → (∀ (s : S) (t : T s) →
|
2024-04-20 18:09:01 -07:00
|
|
|
|
let (s' , s≼s') = mod s t
|
|
|
|
|
in P s t → Q s' (Relaxable.relax r s≼s' t)) →
|
2024-04-20 19:31:13 -07:00
|
|
|
|
Always (And P Q) (m update mod)
|
|
|
|
|
_update-reason_ {{r = r}} {P = P} {Q = Q} {{P-Mono = P-Mono}} {m = m} {mod = mod} (MkAlways aP) modQ =
|
|
|
|
|
MkAlways impl
|
|
|
|
|
where
|
|
|
|
|
impl : ∀ s₁ → let (s₂ , t , _) = (m update mod) s₁ in (And P Q) s₂ t
|
|
|
|
|
impl s
|
|
|
|
|
with p ← aP s
|
|
|
|
|
with (s' , (t , s≼s')) ← m s
|
|
|
|
|
with q ← modQ s' t p
|
|
|
|
|
with (s'' , s'≼s'') ← mod s' t =
|
|
|
|
|
MkAnd (MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p) q
|
2024-04-20 18:09:01 -07:00
|
|
|
|
|
|
|
|
|
infixl 4 _map-reason_
|
|
|
|
|
_map-reason_ : ∀ {T₁ T₂ : S → Set s}
|
|
|
|
|
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
|
|
|
|
|
{m : MonotonicState T₁}
|
|
|
|
|
{f : ∀ (s : S) → T₁ s → T₂ s} →
|
2024-04-20 19:31:13 -07:00
|
|
|
|
Always P m → (∀ (s : S) (t₁ : T₁ s) (t₂ : T₂ s) → P s t₁ → Q s t₂) →
|
|
|
|
|
Always Q (m map f)
|
|
|
|
|
_map-reason_ {P = P} {Q = Q} {m = m} {f = f} (MkAlways aP) P⇒Q =
|
|
|
|
|
MkAlways impl
|
|
|
|
|
where
|
|
|
|
|
impl : ∀ s₁ → let (s₂ , t , _) = (m map f) s₁ in Q s₂ t
|
|
|
|
|
impl s
|
|
|
|
|
with p ← aP s
|
|
|
|
|
with (s' , (t₁ , s≼s')) ← m s = P⇒Q s' t₁ (f s' t₁) p
|