agda-spa/Map.agda

137 lines
6.8 KiB
Agda
Raw Normal View History

open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; cong)
open import Relation.Binary.Definitions using (Decidable)
open import Relation.Binary.Core using (Rel)
open import Relation.Nullary using (Dec; yes; no)
open import Agda.Primitive using (Level; _⊔_)
module Map {a b : Level} (A : Set a) (B : Set b)
(≡-dec-A : Decidable (_≡_ {a} {A}))
where
import Data.List.Membership.Propositional as MemProp
open import Relation.Nullary using (¬_)
open import Data.Nat using ()
open import Data.List using (List; []; _∷_; _++_)
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
open import Data.Empty using ()
keys : List (A × B) List A
keys [] = []
keys ((k , v) xs) = k keys xs
data Unique {c} {C : Set c} : List C Set c where
empty : Unique []
push : forall {x : C} {xs : List C}
All (λ x' ¬ x x') xs
Unique xs
Unique (x xs)
Map : Set (a b)
Map = Σ (List (A × B)) (λ l Unique (keys l))
Unique-append : {c} {C : Set c} {x : C} {xs : List C} ¬ MemProp._∈_ x xs Unique xs Unique (xs ++ (x []))
Unique-append {c} {C} {x} {[]} _ _ = push [] empty
Unique-append {c} {C} {x} {x' xs'} x∉xs (push x'≢ uxs') = push (help x'≢) (Unique-append (λ x∈xs' x∉xs (there x∈xs')) uxs')
where
x'≢x : ¬ x' x
x'≢x x'≡x = x∉xs (here (sym x'≡x))
help : {l : List C} All (λ x'' ¬ x' x'') l All (λ x'' ¬ x' x'') (l ++ (x []))
help {[]} _ = x'≢x []
help {e es} (x'≢e x'≢es) = x'≢e help x'≢es
_∈_ : (A × B) List (A × B) Set (a b)
_∈_ p m = MemProp._∈_ p m
foldr : {c} {C : Set c} (A B C C) -> C -> List (A × B) -> C
foldr f b [] = b
foldr f b ((k , v) xs) = f k v (foldr f b xs)
absurd : {a} {A : Set a} A
absurd ()
private module ImplRelation (_≈_ : B B Set b) where
subset : List (A × B) List (A × B) Set (a b)
subset m₁ m₂ = (k : A) (v : B) (k , v) m₁ Σ B (λ v' v v' × ((k , v') m₂))
private module ImplInsert (f : B B B) where
_∈k_ : A List (A × B) Set a
_∈k_ k m = MemProp._∈_ k (keys m)
insert : A B List (A × B) List (A × B)
insert k v [] = (k , v) []
insert k v (x@(k' , v') xs) with ≡-dec-A k k'
... | yes _ = (k' , f v v') xs
... | no _ = x insert k v xs
merge : List (A × B) List (A × B) List (A × B)
merge m₁ m₂ = foldr insert m₂ m₁
insert-keys-∈ : (k : A) (v : B) (l : List (A × B)) k ∈k l keys l keys (insert k v l)
insert-keys-∈ k v ((k' , v') xs) (here k≡k') with (≡-dec-A k k')
... | yes _ = refl
... | no k≢k' = absurd (k≢k' k≡k')
insert-keys-∈ k v ((k' , _) xs) (there k∈kxs) with (≡-dec-A k k')
... | yes _ = refl
... | no _ = cong (λ xs' k' xs') (insert-keys-∈ k v xs k∈kxs)
insert-keys-∉ : (k : A) (v : B) (l : List (A × B)) ¬ (k ∈k l) (keys l ++ (k [])) keys (insert k v l)
insert-keys-∉ k v [] _ = refl
insert-keys-∉ k v ((k' , v') xs) k∉kl with (≡-dec-A k k')
... | yes k≡k' = absurd (k∉kl (here k≡k'))
... | no _ = cong (λ xs' k' xs') (insert-keys-∉ k v xs (λ k∈kxs k∉kl (there k∈kxs)))
∈k-dec : (k : A) (l : List (A × B)) Dec (k ∈k l)
∈k-dec k [] = no (λ ())
∈k-dec k ((k' , v) xs) with (≡-dec-A k k')
... | yes k≡k' = yes (here k≡k')
... | no k≢k' with (∈k-dec k xs)
... | yes k∈kxs = yes (there k∈kxs)
... | no k∉kxs = no witness
where
witness : ¬ k ∈k ((k' , v) xs)
witness (here k≡k') = k≢k' k≡k'
witness (there k∈kxs) = k∉kxs k∈kxs
insert-preserves-unique : (k : A) (v : B) (l : List (A × B)) Unique (keys l) Unique (keys (insert k v l))
insert-preserves-unique k v l u with (∈k-dec k l)
... | yes k∈kl rewrite insert-keys-∈ k v l k∈kl = u
... | no k∉kl rewrite sym (insert-keys-∉ k v l k∉kl) = Unique-append k∉kl u
merge-preserves-unique : (l₁ l₂ : List (A × B)) Unique (keys l₂) Unique (keys (merge l₁ l₂))
merge-preserves-unique [] l₂ u₂ = u₂
merge-preserves-unique ((k₁ , v₁) xs₁) l₂ u₂ = insert-preserves-unique k₁ v₁ (merge xs₁ l₂) (merge-preserves-unique xs₁ l₂ u₂)
-- Map-functional : ∀ (k : A) (v v' : B) (xs : List (A × B)) → Unique (keys ((k , v) ∷ xs)) → MemProp._∈_ (k , v') ((k , v) ∷ xs) → v ≡ v'
-- Map-functional k v v' _ _ (here k,v'≡k,v) = sym (cong proj₂ k,v'≡k,v)
-- Map-functional k v v' xs (push k≢ _) (there k,v'∈xs) = absurd (unique-not-in xs v' (k≢ , k,v'∈xs))
-- where
-- unique-not-in : ∀ (xs : List (A × B)) (v' : B) → ¬ (All (λ k' → ¬ k ≡ k') (keys xs) × (k , v') ∈ xs)
-- unique-not-in ((k' , _) ∷ xs) v' (k≢k' ∷ _ , here k',≡x) = k≢k' (cong proj₁ k',≡x)
-- unique-not-in (_ ∷ xs) v' (_ ∷ rest , there k,v'∈xs) = unique-not-in xs v' (rest , k,v'∈xs)
module _ (f : B B B) where
open ImplInsert f renaming
( insert to insert-impl
; merge to merge-impl
)
insert : A B Map Map
insert k v (kvs , uks) = (insert-impl k v kvs , insert-preserves-unique k v kvs uks)
merge : Map Map Map
merge (kvs₁ , _) (kvs₂ , uks₂) = (merge-impl kvs₁ kvs₂ , merge-preserves-unique kvs₁ kvs₂ uks₂)
module _ (_≈_ : B B Set b) where
open ImplRelation _≈_ renaming (subset to subset-impl)
subset : Map Map Set (a b)
subset (kvs₁ , _) (kvs₂ , _) = subset-impl kvs₁ kvs₂
lift : Map Map Set (a b)
lift m₁ m₂ = subset m₁ m₂ × subset m₂ m₁