agda-spa/Chain.agda

49 lines
2.5 KiB
Plaintext
Raw Normal View History

open import Equivalence
module Chain {a} {A : Set a}
(_≈_ : A → A → Set a)
(≈-equiv : IsEquivalence A _≈_)
(_R_ : A → A → Set a)
(R-≈-cong : ∀ {a₁ a₁' a₂ a₂'} → a₁ ≈ a₁' → a₂ ≈ a₂' → a₁ R a₂ → a₁' R a₂') where
open import Data.Nat using (; suc; _+_; _≤_)
open import Data.Nat.Properties using (+-comm; m+1+n≰m)
open import Data.Product using (_×_; Σ; _,_)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl)
open import Data.Empty using (⊥)
open IsEquivalence ≈-equiv
module _ where
data Chain : A → A → → Set a where
done : ∀ {a a' : A} → a ≈ a' → Chain a a' 0
step : ∀ {a₁ a₂ a₂' a₃ : A} {n : } → a₁ R a₂ → a₂ ≈ a₂' → Chain a₂' a₃ n → Chain a₁ a₃ (suc n)
Chain-≈-cong₁ : ∀ {a₁ a₁' a₂} {n : } → a₁ ≈ a₁' → Chain a₁ a₂ n → Chain a₁' a₂ n
Chain-≈-cong₁ a₁≈a₁' (done a₁≈a₂) = done (≈-trans (≈-sym a₁≈a₁') a₁≈a₂)
Chain-≈-cong₁ a₁≈a₁' (step a₁Ra a≈a' a'a₂) = step (R-≈-cong a₁≈a₁' ≈-refl a₁Ra) a≈a' a'a₂
Chain-≈-cong₂ : ∀ {a₁ a₂ a₂'} {n : } → a₂ ≈ a₂' → Chain a₁ a₂ n → Chain a₁ a₂' n
Chain-≈-cong₂ a₂≈a₂' (done a₁≈a₂) = done (≈-trans a₁≈a₂ a₂≈a₂')
Chain-≈-cong₂ a₂≈a₂' (step a₁Ra a≈a' a'a₂) = step a₁Ra a≈a' (Chain-≈-cong₂ a₂≈a₂' a'a₂)
concat : ∀ {a₁ a₂ a₃ : A} {n₁ n₂ : } → Chain a₁ a₂ n₁ → Chain a₂ a₃ n₂ → Chain a₁ a₃ (n₁ + n₂)
concat (done a₁≈a₂) a₂a₃ = Chain-≈-cong₁ (≈-sym a₁≈a₂) a₂a₃
concat (step a₁Ra a≈a' a'a₂) a₂a₃ = step a₁Ra a≈a' (concat a'a₂ a₂a₃)
empty-≡ : ∀ {a₁ a₂ : A} → Chain a₁ a₂ 0 → a₁ ≈ a₂
empty-≡ (done a₁≈a₂) = a₁≈a₂
Bounded : → Set a
Bounded bound = ∀ {a₁ a₂ : A} {n : } → Chain a₁ a₂ n → n ≤ bound
Bounded-suc-n : ∀ {a₁ a₂ : A} {n : } → Bounded n → Chain a₁ a₂ (suc n) → ⊥
Bounded-suc-n {a₁} {a₂} {n} bounded c = (m+1+n≰m n n+1≤n)
where
n+1≤n : n + 1 ≤ n
n+1≤n rewrite (+-comm n 1) = bounded c
Height : → Set a
Height height = (Σ (A × A) (λ (a₁ , a₂) → Chain a₁ a₂ height) × Bounded height)