Add another utility proof

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2024-02-11 12:45:33 -08:00
parent d718338759
commit 2b27e397b6

View File

@ -2,9 +2,9 @@ module Utils where
open import Data.List using (List; []; _∷_; _++_)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Data.List.Relation.Unary.All using (All; []; _∷_; map)
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
open import Relation.Binary.PropositionalEquality using (_≡_; sym)
open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl)
open import Relation.Nullary using (¬_)
data Unique {c} {C : Set c} : List C Set c where
@ -30,3 +30,7 @@ Unique-append {c} {C} {x} {x' ∷ xs'} x∉xs (push x'≢ uxs') =
All¬-¬Any : {p c} {C : Set c} {P : C Set p} {l : List C} All (λ x ¬ P x) l ¬ Any P l
All¬-¬Any {l = x xs} (¬Px _) (here Px) = ¬Px Px
All¬-¬Any {l = x xs} (_ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs
All-x∈xs : {a} {A : Set a} (xs : List A) All (λ x x xs) xs
All-x∈xs [] = []
All-x∈xs (x xs') = here refl map there (All-x∈xs xs')