Expose more helpers from 'Map'
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
1ccc6f08e5
commit
311ed75186
@ -19,7 +19,7 @@ open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-ex
|
||||
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
|
||||
open import Data.Empty using (⊥; ⊥-elim)
|
||||
open import Equivalence
|
||||
open import Utils using (Unique; push; empty; Unique-append; All¬-¬Any; All-x∈xs)
|
||||
open import Utils using (Unique; push; Unique-append; All¬-¬Any; All-x∈xs)
|
||||
|
||||
open IsLattice lB using () renaming
|
||||
( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym; ≈-trans to ≈₂-trans
|
||||
@ -34,6 +34,21 @@ private module ImplKeys where
|
||||
keys : List (A × B) → List A
|
||||
keys = map proj₁
|
||||
|
||||
-- See note on `forget` for why this is defined in global scope even though
|
||||
-- it operates on lists.
|
||||
∈k-dec : ∀ (k : A) (l : List (A × B)) → Dec (k ∈ˡ (ImplKeys.keys l))
|
||||
∈k-dec k [] = no (λ ())
|
||||
∈k-dec k ((k' , v) ∷ xs)
|
||||
with (≡-dec-A k k')
|
||||
... | yes k≡k' = yes (here k≡k')
|
||||
... | no k≢k' with (∈k-dec k xs)
|
||||
... | yes k∈kxs = yes (there k∈kxs)
|
||||
... | no k∉kxs = no witness
|
||||
where
|
||||
witness : ¬ k ∈ˡ (ImplKeys.keys ((k' , v) ∷ xs))
|
||||
witness (here k≡k') = k≢k' k≡k'
|
||||
witness (there k∈kxs) = k∉kxs k∈kxs
|
||||
|
||||
private module _ where
|
||||
open MemProp using (_∈_)
|
||||
open ImplKeys
|
||||
@ -65,19 +80,6 @@ private module _ where
|
||||
... | yes k∈xs = yes (there k∈xs)
|
||||
... | no k∉xs = no (λ { (here k≡x) → k≢x k≡x; (there k∈xs) → k∉xs k∈xs })
|
||||
|
||||
∈k-dec : ∀ (k : A) (l : List (A × B)) → Dec (k ∈ keys l)
|
||||
∈k-dec k [] = no (λ ())
|
||||
∈k-dec k ((k' , v) ∷ xs)
|
||||
with (≡-dec-A k k')
|
||||
... | yes k≡k' = yes (here k≡k')
|
||||
... | no k≢k' with (∈k-dec k xs)
|
||||
... | yes k∈kxs = yes (there k∈kxs)
|
||||
... | no k∉kxs = no witness
|
||||
where
|
||||
witness : ¬ k ∈ keys ((k' , v) ∷ xs)
|
||||
witness (here k≡k') = k≢k' k≡k'
|
||||
witness (there k∈kxs) = k∉kxs k∈kxs
|
||||
|
||||
∈-cong : ∀ {c d} {C : Set c} {D : Set d} {c : C} {l : List C} →
|
||||
(f : C → D) → c ∈ l → f c ∈ map f l
|
||||
∈-cong f (here c≡c') = here (cong f c≡c')
|
||||
@ -340,7 +342,7 @@ private module ImplInsert (f : B → B → B) where
|
||||
|
||||
restrict-preserves-Unique : ∀ {l₁ l₂ : List (A × B)} →
|
||||
Unique (keys l₂) → Unique (keys (restrict l₁ l₂))
|
||||
restrict-preserves-Unique {l₁} {[]} _ = empty
|
||||
restrict-preserves-Unique {l₁} {[]} _ = Utils.empty
|
||||
restrict-preserves-Unique {l₁} {(k , v) ∷ xs} (push k≢xs uxs)
|
||||
with ∈k-dec k l₁
|
||||
... | yes _ = push (restrict-preserves-k≢ k≢xs) (restrict-preserves-Unique uxs)
|
||||
@ -476,6 +478,9 @@ private module ImplInsert (f : B → B → B) where
|
||||
Map : Set (a ⊔ℓ b)
|
||||
Map = Σ (List (A × B)) (λ l → Unique (ImplKeys.keys l))
|
||||
|
||||
empty : Map
|
||||
empty = ([] , Utils.empty)
|
||||
|
||||
keys : Map → List A
|
||||
keys (kvs , _) = ImplKeys.keys kvs
|
||||
|
||||
@ -488,8 +493,9 @@ _∈k_ k m = MemProp._∈_ k (keys m)
|
||||
locate : ∀ {k : A} {m : Map} → k ∈k m → Σ B (λ v → (k , v) ∈ m)
|
||||
locate k∈km = locate-impl k∈km
|
||||
|
||||
-- defined this way because ∈ for maps uses projection, so the full map can't be guessed.
|
||||
-- On the other hand, list can be guessed.
|
||||
-- `forget` and `∈k-dec` are defined this way because ∈ for maps uses
|
||||
-- projection, so the full map can't be guessed. On the other hand, list can
|
||||
-- be guessed.
|
||||
forget : ∀ {k : A} {v : B} {l : List (A × B)} → (k , v) ∈ˡ l → k ∈ˡ (ImplKeys.keys l)
|
||||
forget = ∈-cong proj₁
|
||||
|
||||
@ -529,9 +535,12 @@ data Expr : Set (a ⊔ℓ b) where
|
||||
_∪_ : Expr → Expr → Expr
|
||||
_∩_ : Expr → Expr → Expr
|
||||
|
||||
open ImplInsert _⊔₂_ using (union-preserves-Unique; union-equal-keys) renaming (insert to insert-impl; union to union-impl)
|
||||
open ImplInsert _⊔₂_ using (union-preserves-Unique; union-equal-keys; insert-preserves-Unique) renaming (insert to insert-impl; union to union-impl)
|
||||
open ImplInsert _⊓₂_ using (intersect-preserves-Unique; intersect-equal-keys) renaming (intersect to intersect-impl)
|
||||
|
||||
insert : A → B → Map → Map
|
||||
insert k v (l , uks) = (insert-impl k v l , insert-preserves-Unique uks)
|
||||
|
||||
_⊔_ : Map → Map → Map
|
||||
_⊔_ (kvs₁ , _) (kvs₂ , uks₂) = (union-impl kvs₁ kvs₂ , union-preserves-Unique kvs₁ kvs₂ uks₂)
|
||||
|
||||
@ -878,6 +887,8 @@ isLattice = record
|
||||
; absorb-⊓-⊔ = absorb-⊓-⊔
|
||||
}
|
||||
|
||||
open IsLattice isLattice using (_≼_) public
|
||||
|
||||
lattice : Lattice Map
|
||||
lattice = record
|
||||
{ _≈_ = _≈_
|
||||
@ -958,6 +969,10 @@ _updating_via_ (kvs , uks) ks f =
|
||||
, subst Unique (transform-keys-≡ kvs ks f) uks
|
||||
)
|
||||
|
||||
updating-via-keys-≡ : ∀ (m : Map) (ks : List A) (f : A → B) →
|
||||
keys m ≡ keys (m updating ks via f)
|
||||
updating-via-keys-≡ (l , _) = transform-keys-≡ l
|
||||
|
||||
updating-via-∉k-forward : ∀ (m : Map) (ks : List A) (f : A → B) {k : A} →
|
||||
¬ k ∈k m → ¬ k ∈k (m updating ks via f)
|
||||
updating-via-∉k-forward m = transform-∉k-forward
|
||||
@ -995,7 +1010,6 @@ updating-via-k∉ks-backward m = transform-k∉ks-backward
|
||||
module _ {l} {L : Set l}
|
||||
{_≈ˡ_ : L → L → Set l} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L}
|
||||
(lL : IsLattice L _≈ˡ_ _⊔ˡ_ _⊓ˡ_) where
|
||||
open IsLattice isLattice using (_≼_)
|
||||
open IsLattice lL using () renaming (_≼_ to _≼ˡ_)
|
||||
|
||||
module _ (f : L → Map) (f-Monotonic : Monotonic _≼ˡ_ _≼_ f)
|
||||
|
Loading…
Reference in New Issue
Block a user