Remove need for explicit arguments in map derivatives

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2024-03-10 18:35:29 -07:00
parent f21ebdcf46
commit 3305de4710
6 changed files with 17 additions and 17 deletions

View File

@ -26,7 +26,7 @@ data Expr : Set where
data Stmt : Set where data Stmt : Set where
_←_ : String Expr Stmt _←_ : String Expr Stmt
open import Lattice.MapSet String _≟ˢ_ open import Lattice.MapSet _≟ˢ_
renaming renaming
( MapSet to StringSet ( MapSet to StringSet
; insert to insertˢ ; insert to insertˢ

View File

@ -20,11 +20,11 @@ module FromFiniteHeightLattice (fhB : FiniteHeightLattice B)
) )
import Lattice.FiniteMap import Lattice.FiniteMap
module FM = Lattice.FiniteMap A B _≈₂_ _⊔₂_ _⊓₂_ ≡-dec-A isLattice₂ module FM = Lattice.FiniteMap ≡-dec-A isLattice₂
open FM.WithKeys ks public open FM.WithKeys ks public
import Lattice.FiniteValueMap import Lattice.FiniteValueMap
module FVM = Lattice.FiniteValueMap A B _≈₂_ _⊔₂_ _⊓₂_ ≡-dec-A isLattice₂ module FVM = Lattice.FiniteValueMap ≡-dec-A isLattice₂
open FVM.IterProdIsomorphism.WithUniqueKeysAndFixedHeight uks ≈₂-dec height₂ fixedHeight₂ public open FVM.IterProdIsomorphism.WithUniqueKeysAndFixedHeight uks ≈₂-dec height₂ fixedHeight₂ public
≈-dec = ≈₂-dec⇒≈-dec ≈₂-dec ≈-dec = ≈₂-dec⇒≈-dec ≈₂-dec

View File

@ -4,14 +4,14 @@ open import Relation.Binary.PropositionalEquality as Eq
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔_) open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔_)
open import Data.List using (List; _∷_; []) open import Data.List using (List; _∷_; [])
module Lattice.FiniteMap {a b : Level} (A : Set a) (B : Set b) module Lattice.FiniteMap {a b : Level} {A : Set a} {B : Set b}
(_≈₂_ : B B Set b) {_≈₂_ : B B Set b}
(_⊔₂_ : B B B) (_⊓₂_ : B B B) {_⊔₂_ : B B B} {_⊓₂_ : B B B}
(≡-dec-A : IsDecidable (_≡_ {a} {A})) (≡-dec-A : IsDecidable (_≡_ {a} {A}))
(lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
open IsLattice lB using () renaming (_≼_ to _≼₂_) open IsLattice lB using () renaming (_≼_ to _≼₂_)
open import Lattice.Map A B _≈₂_ _⊔₂_ _⊓₂_ ≡-dec-A lB as Map open import Lattice.Map ≡-dec-A lB as Map
using (Map; ⊔-equal-keys; ⊓-equal-keys; ∈k-dec; m₁≼m₂⇒m₁[k]≼m₂[k]) using (Map; ⊔-equal-keys; ⊓-equal-keys; ∈k-dec; m₁≼m₂⇒m₁[k]≼m₂[k])
renaming renaming
( _≈_ to _≈ᵐ_ ( _≈_ to _≈ᵐ_

View File

@ -10,9 +10,9 @@ open import Relation.Binary.Definitions using (Decidable)
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔_) open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔_)
open import Function.Definitions using (Inverseˡ; Inverseʳ) open import Function.Definitions using (Inverseˡ; Inverseʳ)
module Lattice.FiniteValueMap (A : Set) (B : Set) module Lattice.FiniteValueMap {A : Set} {B : Set}
(_≈₂_ : B B Set) {_≈₂_ : B B Set}
(_⊔₂_ : B B B) (_⊓₂_ : B B B) {_⊔₂_ : B B B} {_⊓₂_ : B B B}
(≡-dec-A : Decidable (_≡_ {_} {A})) (≡-dec-A : Decidable (_≡_ {_} {A}))
(lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
@ -29,7 +29,7 @@ open import Data.List.Relation.Unary.Any using (Any; here; there)
open import Relation.Nullary using (¬_) open import Relation.Nullary using (¬_)
open import Isomorphism using (IsInverseˡ; IsInverseʳ) open import Isomorphism using (IsInverseˡ; IsInverseʳ)
open import Lattice.Map A B _≈₂_ _⊔₂_ _⊓₂_ ≡-dec-A lB open import Lattice.Map ≡-dec-A lB
using using
( subset-impl ( subset-impl
; locate; forget ; locate; forget
@ -40,7 +40,7 @@ open import Lattice.Map A B _≈₂_ _⊔₂_ _⊓₂_ ≡-dec-A lB
; in₁; in₂; bothᵘ; single ; in₁; in₂; bothᵘ; single
; ⊔-combines ; ⊔-combines
) )
open import Lattice.FiniteMap A B _≈₂_ _⊔₂_ _⊓₂_ ≡-dec-A lB public open import Lattice.FiniteMap ≡-dec-A lB public
module IterProdIsomorphism where module IterProdIsomorphism where
open import Data.Unit using (; tt) open import Data.Unit using (; tt)

View File

@ -3,9 +3,9 @@ open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym;
open import Relation.Binary.Definitions using (Decidable) open import Relation.Binary.Definitions using (Decidable)
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔_) open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔_)
module Lattice.Map {a b : Level} (A : Set a) (B : Set b) module Lattice.Map {a b : Level} {A : Set a} {B : Set b}
(_≈₂_ : B B Set b) {_≈₂_ : B B Set b}
(_⊔₂_ : B B B) (_⊓₂_ : B B B) {_⊔₂_ : B B B} {_⊓₂_ : B B B}
(≡-dec-A : Decidable (_≡_ {a} {A})) (≡-dec-A : Decidable (_≡_ {a} {A}))
(lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where

View File

@ -3,7 +3,7 @@ open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym;
open import Relation.Binary.Definitions using (Decidable) open import Relation.Binary.Definitions using (Decidable)
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔_) open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔_)
module Lattice.MapSet {a : Level} (A : Set a) (≡-dec-A : Decidable (_≡_ {a} {A})) where module Lattice.MapSet {a : Level} {A : Set a} (≡-dec-A : Decidable (_≡_ {a} {A})) where
open import Data.List using (List; map) open import Data.List using (List; map)
open import Data.Product using (_,_; proj₁) open import Data.Product using (_,_; proj₁)
@ -12,7 +12,7 @@ open import Function using (_∘_)
open import Lattice.Unit using (; tt) renaming (_≈_ to _≈₂_; _⊔_ to _⊔₂_; _⊓_ to _⊓₂_; isLattice to -isLattice) open import Lattice.Unit using (; tt) renaming (_≈_ to _≈₂_; _⊔_ to _⊔₂_; _⊓_ to _⊓₂_; isLattice to -isLattice)
import Lattice.Map import Lattice.Map
private module UnitMap = Lattice.Map A _≈₂_ _⊔₂_ _⊓₂_ ≡-dec-A -isLattice private module UnitMap = Lattice.Map ≡-dec-A -isLattice
open UnitMap open UnitMap
using (Map; Expr; ⟦_⟧) using (Map; Expr; ⟦_⟧)
renaming renaming