Fix definition of 'less than' to not involve a third variable.

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
2024-02-07 21:04:13 -08:00
parent 9646096c75
commit 512cd22be5
5 changed files with 38 additions and 30 deletions

View File

@@ -282,29 +282,26 @@ module Plain where
open IsLattice isLattice using (_≼_; _≺_)
⊥≺[x] : (x : A) [ x ]
⊥≺[x] x = (([ x ] , ≈-refl) , λ ())
⊥≺[x] x = (≈-refl , λ ())
x≺[y]⇒y≡⊥ : (x : AboveBelow) (y : A) x [ y ] x
x≺[y]⇒y≡⊥ x y ((d , x⊔d≈[y]) , x̷≈[y]) with d
... | rewrite x⊔⊥≡x x with ≈-lift a≈y x⊔d≈[y] = ⊥-elim (x̷≈[y] (≈-lift a≈y))
... | rewrite x⊔ x with () <- x⊔d≈[y]
... | [ a ] with x
... | = refl
... | with () <- x⊔d≈[y]
... | [ b ] with ≈₁-dec b a
... | yes _ with ≈-lift b≈y x⊔d≈[y] = ⊥-elim (x̷≈[y] (≈-lift b≈y))
... | no _ with () <- x⊔d≈[y]
x≺[y]⇒x≡⊥ : (x : AboveBelow) (y : A) x [ y ] x
x≺[y]⇒x≡⊥ x y ((x⊔[y]≈[y]) , x̷≈[y]) with x
... | = refl
... | with () x⊔[y]≈[y]
... | [ b ] with ≈₁-dec b y
... | yes b≈y = ⊥-elim (x̷≈[y] (≈-lift b≈y))
... | no _ with () x⊔[y]≈[y]
[x]≺⊤ : (x : A) [ x ]
[x]≺⊤ x rewrite x⊔ [ x ] = (( , ≈--) , λ ())
[x]≺⊤ x rewrite x⊔ [ x ] = (≈-- , λ ())
[x]≺y⇒y≡ : (x : A) (y : AboveBelow) [ x ] y y
[x]≺y⇒y≡ x y ((d , [x]⊔d≈y) , [x]̷≈y) with d
... | rewrite x⊔⊥≡x [ x ] with ≈-lift x≈a [x]⊔d≈y = ⊥-elim ([x]̷≈y (≈-lift x≈a))
... | rewrite x⊔ [ x ] with ≈-- [x]⊔d≈y = refl
[x]≺y⇒y≡ x y ([x]⊔y≈y , [x]̷≈y) with y
... | with () [x]⊔y≈y
... | = refl
... | [ a ] with ≈₁-dec x a
... | yes _ with ≈-lift x≈a [x]⊔d≈y = ⊥-elim ([x]̷≈y (≈-lift x≈a))
... | no _ with ≈-- [x]⊔d≈y = refl
... | yes x≈a = ⊥-elim ([x]̷≈y (≈-lift x≈a))
... | no _ with () [x]⊔y≈y
open Chain _≈_ ≈-equiv (IsLattice._≺_ isLattice) (IsLattice.≺-cong isLattice)
@@ -313,7 +310,7 @@ module Plain where
longestChain = step (⊥≺[x] x) ≈-refl (step ([x]≺⊤ x) ≈-- (done ≈--))
¬-Chain- : {ab : AboveBelow} {n : } ¬ Chain ab (suc n)
¬-Chain- (step ((d , ⊤⊔d≈x) , ̷≈x) _ _) rewrite ⊔x≡ d = ⊥-elim (̷≈x ⊤⊔d≈x)
¬-Chain- {x} (step (⊤⊔x≈x , ̷≈x) _ _) rewrite ⊔x≡ x = ⊥-elim (̷≈x ⊤⊔x≈x)
isLongest : {ab₁ ab₂ : AboveBelow} {n : } Chain ab₁ ab₂ n n 2
isLongest (done _) = z≤n