Fix definition of 'less than' to not involve a third variable.
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
@@ -282,29 +282,26 @@ module Plain where
|
||||
open IsLattice isLattice using (_≼_; _≺_)
|
||||
|
||||
⊥≺[x] : ∀ (x : A) → ⊥ ≺ [ x ]
|
||||
⊥≺[x] x = (([ x ] , ≈-refl) , λ ())
|
||||
⊥≺[x] x = (≈-refl , λ ())
|
||||
|
||||
x≺[y]⇒y≡⊥ : ∀ (x : AboveBelow) (y : A) → x ≺ [ y ] → x ≡ ⊥
|
||||
x≺[y]⇒y≡⊥ x y ((d , x⊔d≈[y]) , x̷≈[y]) with d
|
||||
... | ⊥ rewrite x⊔⊥≡x x with ≈-lift a≈y ← x⊔d≈[y] = ⊥-elim (x̷≈[y] (≈-lift a≈y))
|
||||
... | ⊤ rewrite x⊔⊤≡⊤ x with () <- x⊔d≈[y]
|
||||
... | [ a ] with x
|
||||
... | ⊥ = refl
|
||||
... | ⊤ with () <- x⊔d≈[y]
|
||||
... | [ b ] with ≈₁-dec b a
|
||||
... | yes _ with ≈-lift b≈y ← x⊔d≈[y] = ⊥-elim (x̷≈[y] (≈-lift b≈y))
|
||||
... | no _ with () <- x⊔d≈[y]
|
||||
x≺[y]⇒x≡⊥ : ∀ (x : AboveBelow) (y : A) → x ≺ [ y ] → x ≡ ⊥
|
||||
x≺[y]⇒x≡⊥ x y ((x⊔[y]≈[y]) , x̷≈[y]) with x
|
||||
... | ⊥ = refl
|
||||
... | ⊤ with () ← x⊔[y]≈[y]
|
||||
... | [ b ] with ≈₁-dec b y
|
||||
... | yes b≈y = ⊥-elim (x̷≈[y] (≈-lift b≈y))
|
||||
... | no _ with () ← x⊔[y]≈[y]
|
||||
|
||||
[x]≺⊤ : ∀ (x : A) → [ x ] ≺ ⊤
|
||||
[x]≺⊤ x rewrite x⊔⊤≡⊤ [ x ] = ((⊤ , ≈-⊤-⊤) , λ ())
|
||||
[x]≺⊤ x rewrite x⊔⊤≡⊤ [ x ] = (≈-⊤-⊤ , λ ())
|
||||
|
||||
[x]≺y⇒y≡⊤ : ∀ (x : A) (y : AboveBelow) → [ x ] ≺ y → y ≡ ⊤
|
||||
[x]≺y⇒y≡⊤ x y ((d , [x]⊔d≈y) , [x]̷≈y) with d
|
||||
... | ⊥ rewrite x⊔⊥≡x [ x ] with ≈-lift x≈a ← [x]⊔d≈y = ⊥-elim ([x]̷≈y (≈-lift x≈a))
|
||||
... | ⊤ rewrite x⊔⊤≡⊤ [ x ] with ≈-⊤-⊤ ← [x]⊔d≈y = refl
|
||||
[x]≺y⇒y≡⊤ x y ([x]⊔y≈y , [x]̷≈y) with y
|
||||
... | ⊥ with () ← [x]⊔y≈y
|
||||
... | ⊤ = refl
|
||||
... | [ a ] with ≈₁-dec x a
|
||||
... | yes _ with ≈-lift x≈a ← [x]⊔d≈y = ⊥-elim ([x]̷≈y (≈-lift x≈a))
|
||||
... | no _ with ≈-⊤-⊤ ← [x]⊔d≈y = refl
|
||||
... | yes x≈a = ⊥-elim ([x]̷≈y (≈-lift x≈a))
|
||||
... | no _ with () ← [x]⊔y≈y
|
||||
|
||||
open Chain _≈_ ≈-equiv (IsLattice._≺_ isLattice) (IsLattice.≺-cong isLattice)
|
||||
|
||||
@@ -313,7 +310,7 @@ module Plain where
|
||||
longestChain = step (⊥≺[x] x) ≈-refl (step ([x]≺⊤ x) ≈-⊤-⊤ (done ≈-⊤-⊤))
|
||||
|
||||
¬-Chain-⊤ : ∀ {ab : AboveBelow} {n : ℕ} → ¬ Chain ⊤ ab (suc n)
|
||||
¬-Chain-⊤ (step ((d , ⊤⊔d≈x) , ⊤̷≈x) _ _) rewrite ⊤⊔x≡⊤ d = ⊥-elim (⊤̷≈x ⊤⊔d≈x)
|
||||
¬-Chain-⊤ {x} (step (⊤⊔x≈x , ⊤̷≈x) _ _) rewrite ⊤⊔x≡⊤ x = ⊥-elim (⊤̷≈x ⊤⊔x≈x)
|
||||
|
||||
isLongest : ∀ {ab₁ ab₂ : AboveBelow} {n : ℕ} → Chain ab₁ ab₂ n → n ≤ 2
|
||||
isLongest (done _) = z≤n
|
||||
|
||||
Reference in New Issue
Block a user